Learning Human Motion Prediction via Stochastic Differential Equations
- URL: http://arxiv.org/abs/2112.11124v1
- Date: Tue, 21 Dec 2021 11:55:13 GMT
- Title: Learning Human Motion Prediction via Stochastic Differential Equations
- Authors: Kedi Lyu, Zhenguang Liu, Shuang Wu, Haipeng Chen, Xuhong Zhang, Yuyu
Yin
- Abstract summary: We propose a novel approach in modeling the motion prediction problem based on differential equations and path integrals.
It achieves a 12.48% accuracy improvement over current state-of-the-art methods in average.
- Score: 19.30774202476477
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human motion understanding and prediction is an integral aspect in our
pursuit of machine intelligence and human-machine interaction systems. Current
methods typically pursue a kinematics modeling approach, relying heavily upon
prior anatomical knowledge and constraints. However, such an approach is hard
to generalize to different skeletal model representations, and also tends to be
inadequate in accounting for the dynamic range and complexity of motion, thus
hindering predictive accuracy. In this work, we propose a novel approach in
modeling the motion prediction problem based on stochastic differential
equations and path integrals. The motion profile of each skeletal joint is
formulated as a basic stochastic variable and modeled with the Langevin
equation. We develop a strategy of employing GANs to simulate path integrals
that amounts to optimizing over possible future paths. We conduct experiments
in two large benchmark datasets, Human 3.6M and CMU MoCap. It is highlighted
that our approach achieves a 12.48% accuracy improvement over current
state-of-the-art methods in average.
Related papers
- A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - Towards Learning Stochastic Population Models by Gradient Descent [0.0]
We show that simultaneous estimation of parameters and structure poses major challenges for optimization procedures.
We demonstrate accurate estimation of models but find that enforcing the inference of parsimonious, interpretable models drastically increases the difficulty.
arXiv Detail & Related papers (2024-04-10T14:38:58Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
We propose Equivariant Graph Neural Operator (EGNO) to directly models dynamics as trajectories instead of just next-step prediction.
EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it.
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods.
arXiv Detail & Related papers (2024-01-19T21:50:32Z) - A Neuro-Symbolic Approach for Enhanced Human Motion Prediction [5.742409080817885]
We propose a neuro-symbolic approach for human motion prediction (NeuroSyM)
NeuroSyM weights differently the interactions in the neighbourhood by leveraging an intuitive technique for spatial representation called qualitative Trajectory Calculus (QTC)
Experimental results show that the NeuroSyM approach outperforms in most cases the baseline architectures in terms of prediction accuracy.
arXiv Detail & Related papers (2023-04-23T20:11:40Z) - Evaluation of Differentially Constrained Motion Models for Graph-Based
Trajectory Prediction [1.1947990549568765]
This research investigates the performance of various motion models in combination with numerical solvers for the prediction task.
The study shows that simpler models, such as low-order integrator models, are preferred over more complex, e.g., kinematic models, to achieve accurate predictions.
arXiv Detail & Related papers (2023-04-11T10:15:20Z) - STGlow: A Flow-based Generative Framework with Dual Graphormer for
Pedestrian Trajectory Prediction [22.553356096143734]
We propose a novel generative flow based framework with dual graphormer for pedestrian trajectory prediction (STGlow)
Our method can more precisely model the underlying data distribution by optimizing the exact log-likelihood of motion behaviors.
Experimental results on several benchmarks demonstrate that our method achieves much better performance compared to previous state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-21T07:29:24Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
We present a new framework to formulate the trajectory prediction task as a reverse process of motion indeterminacy diffusion (MID)
We encode the history behavior information and the social interactions as a state embedding and devise a Transformer-based diffusion model to capture the temporal dependencies of trajectories.
Experiments on the human trajectory prediction benchmarks including the Stanford Drone and ETH/UCY datasets demonstrate the superiority of our method.
arXiv Detail & Related papers (2022-03-25T16:59:08Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
The Dynamic Mode Decomposition has proved to be a very efficient technique to study dynamic data.
The application of this approach becomes problematic if the available data is incomplete because some dimensions of smaller scale either missing or unmeasured.
We consider a first-order approximation of the Mori-Zwanzig decomposition, state the corresponding optimization problem and solve it with the gradient-based optimization method.
arXiv Detail & Related papers (2022-02-23T11:23:59Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Modeling Stochastic Microscopic Traffic Behaviors: a Physics Regularized
Gaussian Process Approach [1.6242924916178285]
This study presents a microscopic traffic model that can capture randomness and measure errors in the real world.
Since one unique feature of the proposed framework is the capability of capturing both car-following and lane-changing behaviors with one single model, numerical tests are carried out with two separated datasets.
arXiv Detail & Related papers (2020-07-17T06:03:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.