Ultimate quantum sensitivity in the estimation of the delay between two
interfering photons through frequency-resolving sampling
- URL: http://arxiv.org/abs/2112.12102v2
- Date: Tue, 18 Apr 2023 18:37:16 GMT
- Title: Ultimate quantum sensitivity in the estimation of the delay between two
interfering photons through frequency-resolving sampling
- Authors: Danilo Triggiani and Giorgos Psaroudis and Vincenzo Tamma
- Abstract summary: We demonstrate the ultimate sensitivity allowed by quantum physics in the estimation of the time delay between two photons by measuring their interference at a beam-splitter.
This sensitivity can be increased quadratically by decreasing the photonic temporal bandwidth.
Applications can range from more feasible imaging of nanostructures, including biological samples, to quantum enhanced estimation based on frequency-resolved boson sampling in optical networks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate the ultimate sensitivity allowed by quantum physics in the
estimation of the time delay between two photons by measuring their
interference at a beam-splitter through frequency-resolving sampling
measurements. This sensitivity can be increased quadratically by decreasing the
photonic temporal bandwidth even at values smaller than the time delay when
standard two-photon interferometers become inoperable and without adapting the
path of the reference photon, nor the need of time-resolving detectors with an
unfeasible high resolution. Applications can range from more feasible imaging
of nanostructures, including biological samples, and nanomaterial surfaces to
quantum enhanced estimation based on frequency-resolved boson sampling in
optical networks.
Related papers
- Estimation with ultimate quantum precision of the transverse displacement between two photons via two-photon interference sampling measurements [0.0]
We present a quantum sensing scheme achieving the ultimate quantum sensitivity in the estimation of the transverse displacement between two photons interfering at a balanced beam splitter.
This scheme can possibly lead to enhanced high-precision nanoscopic techniques, such as super-resolved single-molecule localization microscopy with quantum dots.
arXiv Detail & Related papers (2023-09-13T11:18:00Z) - Ultrafast Measurement of Energy-Time Entanglement with an Optical Kerr
Shutter [0.0]
We implement optical Kerr shutters in single mode fibers to map out the sub-picosecond correlations of energy-time entangled photon pairs.
Measurements are used to verify entanglement by means of the violation of a time-bandwidth inequality.
arXiv Detail & Related papers (2023-05-23T20:02:20Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Simultaneous quantum estimation of phase and indistinguishability in a
two photon interferometer [0.0]
We derive the quantum Fisher information matrix associated to the simultaneous estimation of an interferometric phase.
We perform an experiment based on a pair of photons with an unknown degree of indistinguishability entering a two-port interferometer.
arXiv Detail & Related papers (2023-03-27T18:56:03Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Parameter estimation of time and frequency shifts with generalized HOM
interferometry [0.0]
Hong-Ou-Mandel interferometry takes advantage of the quantum nature of two-photon interference to increase the resolution of precision measurements of time-delays.
We analyze how the precision of Hong-Ou-Mandel interferometers can be significantly improved by engineering the spectral distribution of two-photon probe states.
arXiv Detail & Related papers (2021-06-01T17:38:13Z) - Spectrally-resolved four-photon interference of time-frequency entangled
photons [0.0]
We analyze the behavior of phase-insensitive spectrally-resolved interferences arising from two pairs of time-frequency entangled photons.
Our analysis is a thorough exploration of what can be achieved using time-frequency entanglement and spectrally-resolved Bell-state measurements.
arXiv Detail & Related papers (2021-04-12T17:25:07Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.