Maximum Entropy on Erroneous Predictions (MEEP): Improving model
calibration for medical image segmentation
- URL: http://arxiv.org/abs/2112.12218v3
- Date: Fri, 2 Jun 2023 14:47:01 GMT
- Title: Maximum Entropy on Erroneous Predictions (MEEP): Improving model
calibration for medical image segmentation
- Authors: Agostina Larrazabal, Cesar Martinez, Jose Dolz, Enzo Ferrante
- Abstract summary: We introduce MEEP, a training strategy for segmentation networks which selectively penalizes overconfident predictions, focusing only on misclassified pixels.
We benchmark the proposed strategy in two challenging segmentation tasks: white matter hyperintensity lesions in magnetic resonance images (MRI) of the brain, and atrial segmentation in cardiac MRI.
- Score: 10.159176702917788
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Modern deep neural networks achieved remarkable progress in medical image
segmentation tasks. However, it has recently been observed that they tend to
produce overconfident estimates, even in situations of high uncertainty,
leading to poorly calibrated and unreliable models. In this work we introduce
Maximum Entropy on Erroneous Predictions (MEEP), a training strategy for
segmentation networks which selectively penalizes overconfident predictions,
focusing only on misclassified pixels. Our method is agnostic to the neural
architecture, does not increase model complexity and can be coupled with
multiple segmentation loss functions. We benchmark the proposed strategy in two
challenging segmentation tasks: white matter hyperintensity lesions in magnetic
resonance images (MRI) of the brain, and atrial segmentation in cardiac MRI.
The experimental results demonstrate that coupling MEEP with standard
segmentation losses leads to improvements not only in terms of model
calibration, but also in segmentation quality.
Related papers
- Dimensionality Reduction and Nearest Neighbors for Improving Out-of-Distribution Detection in Medical Image Segmentation [1.2873975765521795]
This work applied the Mahalanobis distance (MD) post hoc to the bottleneck features of four Swin UNETR and nnU-net models that segmented the liver.
Images the models failed on were detected with high performance and minimal computational load.
arXiv Detail & Related papers (2024-08-05T18:24:48Z) - Unveiling Incomplete Modality Brain Tumor Segmentation: Leveraging Masked Predicted Auto-Encoder and Divergence Learning [6.44069573245889]
Brain tumor segmentation remains a significant challenge, particularly in the context of multi-modal magnetic resonance imaging (MRI)
We propose a novel strategy, which is called masked predicted pre-training, enabling robust feature learning from incomplete modality data.
In the fine-tuning phase, we utilize a knowledge distillation technique to align features between complete and missing modality data, simultaneously enhancing model robustness.
arXiv Detail & Related papers (2024-06-12T20:35:16Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - DOMINO: Domain-aware Model Calibration in Medical Image Segmentation [51.346121016559024]
Modern deep neural networks are poorly calibrated, compromising trustworthiness and reliability.
We propose DOMINO, a domain-aware model calibration method that leverages the semantic confusability and hierarchical similarity between class labels.
Our results show that DOMINO-calibrated deep neural networks outperform non-calibrated models and state-of-the-art morphometric methods in head image segmentation.
arXiv Detail & Related papers (2022-09-13T15:31:52Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - Trustworthy Medical Segmentation with Uncertainty Estimation [0.7829352305480285]
This paper introduces a new Bayesian deep learning framework for uncertainty quantification in segmentation neural networks.
We evaluate the proposed framework on medical image segmentation data from Magnetic Resonances Imaging and Computed Tomography scans.
Our experiments on multiple benchmark datasets demonstrate that the proposed framework is more robust to noise and adversarial attacks as compared to state-of-the-art segmentation models.
arXiv Detail & Related papers (2021-11-10T22:46:05Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
We propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan.
MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations.
We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing.
arXiv Detail & Related papers (2021-07-07T19:06:34Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - DONet: Dual Objective Networks for Skin Lesion Segmentation [77.9806410198298]
We propose a simple yet effective framework, named Dual Objective Networks (DONet), to improve the skin lesion segmentation.
Our DONet adopts two symmetric decoders to produce different predictions for approaching different objectives.
To address the challenge of large variety of lesion scales and shapes in dermoscopic images, we additionally propose a recurrent context encoding module (RCEM)
arXiv Detail & Related papers (2020-08-19T06:02:46Z) - Collaborative Boundary-aware Context Encoding Networks for Error Map
Prediction [65.44752447868626]
We propose collaborative boundaryaware context encoding networks called AEP-Net for error prediction task.
Specifically, we propose a collaborative feature transformation branch for better feature fusion between images and masks, and precise localization of error regions.
The AEP-Net achieves an average DSC of 0.8358, 0.8164 for error prediction task, and shows a high Pearson correlation coefficient of 0.9873.
arXiv Detail & Related papers (2020-06-25T12:42:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.