Multi-encoder nnU-Net outperforms Transformer models with self-supervised pretraining
- URL: http://arxiv.org/abs/2504.03474v1
- Date: Fri, 04 Apr 2025 14:31:06 GMT
- Title: Multi-encoder nnU-Net outperforms Transformer models with self-supervised pretraining
- Authors: Seyedeh Sahar Taheri Otaghsara, Reza Rahmanzadeh,
- Abstract summary: This study addresses the essential task of medical image segmentation, which involves the automatic identification and delineation of anatomical structures and pathological regions in medical images.<n>We propose a novel self-supervised learning Multi-encoder nnU-Net architecture designed to process multiple MRI modalities independently through separate encoders.<n>Our Multi-encoder nnU-Net demonstrates exceptional performance, achieving a Dice Similarity Coefficient (DSC) of 93.72%, which surpasses that of other models such as vanilla nnU-Net, SegResNet, and Swin UNETR.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study addresses the essential task of medical image segmentation, which involves the automatic identification and delineation of anatomical structures and pathological regions in medical images. Accurate segmentation is crucial in radiology, as it aids in the precise localization of abnormalities such as tumors, thereby enabling effective diagnosis, treatment planning, and monitoring of disease progression. Specifically, the size, shape, and location of tumors can significantly influence clinical decision-making and therapeutic strategies, making accurate segmentation a key component of radiological workflows. However, challenges posed by variations in MRI modalities, image artifacts, and the scarcity of labeled data complicate the segmentation task and impact the performance of traditional models. To overcome these limitations, we propose a novel self-supervised learning Multi-encoder nnU-Net architecture designed to process multiple MRI modalities independently through separate encoders. This approach allows the model to capture modality-specific features before fusing them for the final segmentation, thus improving accuracy. Our Multi-encoder nnU-Net demonstrates exceptional performance, achieving a Dice Similarity Coefficient (DSC) of 93.72%, which surpasses that of other models such as vanilla nnU-Net, SegResNet, and Swin UNETR. By leveraging the unique information provided by each modality, the model enhances segmentation tasks, particularly in scenarios with limited annotated data. Evaluations highlight the effectiveness of this architecture in improving tumor segmentation outcomes.
Related papers
- PINN-EMFNet: PINN-based and Enhanced Multi-Scale Feature Fusion Network for Breast Ultrasound Images Segmentation [5.246262946799736]
This study proposes a PINN-based and Enhanced Multi-Scale Feature Fusion Network.<n>The network efficiently integrates and globally models multi-scale features through several structural innovations.<n>In the decoder section, a Multi-Scale Feature Refinement Decoder is employed, which, combined with a Multi-Scale Supervision Mechanism and a correction module, significantly improves segmentation accuracy and adaptability.
arXiv Detail & Related papers (2024-12-22T09:16:00Z) - MRGen: Segmentation Data Engine For Underrepresented MRI Modalities [59.61465292965639]
Training medical image segmentation models for rare yet clinically significant imaging modalities is challenging due to the scarcity of annotated data.<n>This paper investigates leveraging generative models to synthesize training data, to train segmentation models for underrepresented modalities.
arXiv Detail & Related papers (2024-12-04T16:34:22Z) - Discriminative Hamiltonian Variational Autoencoder for Accurate Tumor Segmentation in Data-Scarce Regimes [2.8498944632323755]
We propose an end-to-end hybrid architecture for medical image segmentation.
We use Hamiltonian Variational Autoencoders (HVAE) and a discriminative regularization to improve the quality of generated images.
Our architecture operates on a slice-by-slice basis to segment 3D volumes, capitilizing on the richly augmented dataset.
arXiv Detail & Related papers (2024-06-17T15:42:08Z) - DiffSeg: A Segmentation Model for Skin Lesions Based on Diffusion Difference [2.9082809324784082]
We introduce DiffSeg, a segmentation model for skin lesions based on diffusion difference.
Its multi-output capability mimics doctors' annotation behavior, facilitating the visualization of segmentation result consistency and ambiguity.
We demonstrate the effectiveness of DiffSeg on the ISIC 2018 Challenge dataset, outperforming state-of-the-art U-Net-based methods.
arXiv Detail & Related papers (2024-04-25T09:57:52Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
Uncertainty in medical image segmentation tasks, especially inter-rater variability, presents a significant challenge.
This variability directly impacts the development and evaluation of automated segmentation algorithms.
We report the set-up and summarize the benchmark results of the Quantification of Uncertainties in Biomedical Image Quantification Challenge (QUBIQ)
arXiv Detail & Related papers (2024-03-19T17:57:24Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - 3D Medical Image Segmentation based on multi-scale MPU-Net [5.393743755706745]
This paper proposes a tumor segmentation model MPU-Net for patient volume CT images.
It is inspired by Transformer with a global attention mechanism.
Compared with the benchmark model U-Net, MPU-Net shows excellent segmentation results.
arXiv Detail & Related papers (2023-07-11T20:46:19Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Cross-Domain Segmentation with Adversarial Loss and Covariate Shift for
Biomedical Imaging [2.1204495827342438]
This manuscript aims to implement a novel model that can learn robust representations from cross-domain data by encapsulating distinct and shared patterns from different modalities.
The tests on CT and MRI liver data acquired in routine clinical trials show that the proposed model outperforms all other baseline with a large margin.
arXiv Detail & Related papers (2020-06-08T07:35:55Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
We propose a novel multi-site network (MS-Net) for improving prostate segmentation by learning robust representations.
Our MS-Net improves the performance across all datasets consistently, and outperforms state-of-the-art methods for multi-site learning.
arXiv Detail & Related papers (2020-02-09T14:11:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.