Direct Behavior Specification via Constrained Reinforcement Learning
- URL: http://arxiv.org/abs/2112.12228v1
- Date: Wed, 22 Dec 2021 21:12:28 GMT
- Title: Direct Behavior Specification via Constrained Reinforcement Learning
- Authors: Julien Roy, Roger Girgis, Joshua Romoff, Pierre-Luc Bacon and
Christopher Pal
- Abstract summary: CMDPs can be adapted to solve goal-based tasks while adhering to a set of behavioral constraints.
We evaluate this framework on a set of continuous control tasks relevant to the application of Reinforcement Learning for NPC design in video games.
- Score: 12.679780444702573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The standard formulation of Reinforcement Learning lacks a practical way of
specifying what are admissible and forbidden behaviors. Most often,
practitioners go about the task of behavior specification by manually
engineering the reward function, a counter-intuitive process that requires
several iterations and is prone to reward hacking by the agent. In this work,
we argue that constrained RL, which has almost exclusively been used for safe
RL, also has the potential to significantly reduce the amount of work spent for
reward specification in applied Reinforcement Learning projects. To this end,
we propose to specify behavioral preferences in the CMDP framework and to use
Lagrangian methods, which seek to solve a min-max problem between the agent's
policy and the Lagrangian multipliers, to automatically weigh each of the
behavioral constraints. Specifically, we investigate how CMDPs can be adapted
in order to solve goal-based tasks while adhering to a set of behavioral
constraints and propose modifications to the SAC-Lagrangian algorithm to handle
the challenging case of several constraints. We evaluate this framework on a
set of continuous control tasks relevant to the application of Reinforcement
Learning for NPC design in video games.
Related papers
- Safe and Balanced: A Framework for Constrained Multi-Objective Reinforcement Learning [26.244121960815907]
We propose a primal-based framework that orchestrates policy optimization between multi-objective learning and constraint adherence.
Our method employs a novel natural policy gradient manipulation method to optimize multiple RL objectives.
Empirically, our proposed method also outperforms prior state-of-the-art methods on challenging safe multi-objective reinforcement learning tasks.
arXiv Detail & Related papers (2024-05-26T00:42:10Z) - Constrained Reinforcement Learning with Smoothed Log Barrier Function [27.216122901635018]
We propose a new constrained RL method called CSAC-LB (Constrained Soft Actor-Critic with Log Barrier Function)
It achieves competitive performance without any pre-training by applying a linear smoothed log barrier function to an additional safety critic.
We show that with CSAC-LB, we achieve state-of-the-art performance on several constrained control tasks with different levels of difficulty.
arXiv Detail & Related papers (2024-03-21T16:02:52Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
offline reinforcement learning (RL) paradigm provides recipe to convert static behavior datasets into policies that can perform better than the policy that collected the data.
In this paper, we propose an adaptive scheme for action quantization.
We show that several state-of-the-art offline RL methods such as IQL, CQL, and BRAC improve in performance on benchmarks when combined with our proposed discretization scheme.
arXiv Detail & Related papers (2023-10-18T06:07:10Z) - Semantically Aligned Task Decomposition in Multi-Agent Reinforcement
Learning [56.26889258704261]
We propose a novel "disentangled" decision-making method, Semantically Aligned task decomposition in MARL (SAMA)
SAMA prompts pretrained language models with chain-of-thought that can suggest potential goals, provide suitable goal decomposition and subgoal allocation as well as self-reflection-based replanning.
SAMA demonstrates considerable advantages in sample efficiency compared to state-of-the-art ASG methods.
arXiv Detail & Related papers (2023-05-18T10:37:54Z) - Regularized Soft Actor-Critic for Behavior Transfer Learning [10.519534498340482]
Existing imitation learning methods mainly focus on making an agent effectively mimic a demonstrated behavior.
We propose a method called Regularized Soft Actor-Critic which formulates the main task and the imitation task.
We evaluate our method on continuous control tasks relevant to video games applications.
arXiv Detail & Related papers (2022-09-27T07:52:04Z) - Penalized Proximal Policy Optimization for Safe Reinforcement Learning [68.86485583981866]
We propose Penalized Proximal Policy Optimization (P3O), which solves the cumbersome constrained policy iteration via a single minimization of an equivalent unconstrained problem.
P3O utilizes a simple-yet-effective penalty function to eliminate cost constraints and removes the trust-region constraint by the clipped surrogate objective.
We show that P3O outperforms state-of-the-art algorithms with respect to both reward improvement and constraint satisfaction on a set of constrained locomotive tasks.
arXiv Detail & Related papers (2022-05-24T06:15:51Z) - Reinforcement Learning Agent Training with Goals for Real World Tasks [3.747737951407512]
Reinforcement Learning (RL) is a promising approach for solving various control, optimization, and sequential decision making tasks.
We propose a specification language (Inkling Goal Specification) for complex control and optimization tasks.
We include a set of experiments showing that the proposed method provides great ease of use to specify a wide range of real world tasks.
arXiv Detail & Related papers (2021-07-21T23:21:16Z) - Outcome-Driven Reinforcement Learning via Variational Inference [95.82770132618862]
We discuss a new perspective on reinforcement learning, recasting it as the problem of inferring actions that achieve desired outcomes, rather than a problem of maximizing rewards.
To solve the resulting outcome-directed inference problem, we establish a novel variational inference formulation that allows us to derive a well-shaped reward function.
We empirically demonstrate that this method eliminates the need to design reward functions and leads to effective goal-directed behaviors.
arXiv Detail & Related papers (2021-04-20T18:16:21Z) - Regularized Inverse Reinforcement Learning [49.78352058771138]
Inverse Reinforcement Learning (IRL) aims to facilitate a learner's ability to imitate expert behavior.
Regularized IRL applies strongly convex regularizers to the learner's policy.
We propose tractable solutions, and practical methods to obtain them, for regularized IRL.
arXiv Detail & Related papers (2020-10-07T23:38:47Z) - Deep Constrained Q-learning [15.582910645906145]
In many real world applications, reinforcement learning agents have to optimize multiple objectives while following certain rules or satisfying a set of constraints.
We propose Constrained Q-learning, a novel off-policy reinforcement learning framework restricting the action space directly in the Q-update to learn the optimal Q-function for the induced constrained MDP and the corresponding safe policy.
arXiv Detail & Related papers (2020-03-20T17:26:03Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
We propose a model-free RL algorithm that enables the use of Linear Temporal Logic (LTL) to formulate a goal for unknown continuous-state/action Markov Decision Processes (MDPs)
The algorithm is guaranteed to synthesise a control policy whose traces satisfy the specification with maximal probability.
arXiv Detail & Related papers (2019-02-02T20:09:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.