Local Advantage Networks for Cooperative Multi-Agent Reinforcement
Learning
- URL: http://arxiv.org/abs/2112.12458v3
- Date: Thu, 26 Oct 2023 11:11:26 GMT
- Title: Local Advantage Networks for Cooperative Multi-Agent Reinforcement
Learning
- Authors: Rapha\"el Avalos, Mathieu Reymond, Ann Now\'e, Diederik M. Roijers
- Abstract summary: This paper presents a new type of reinforcement learning algorithm for cooperative partially observable environments.
We use a dueling architecture to learn for each agent a decentralized best-response policies via individual advantage functions.
Evaluation on the StarCraft II multi-agent challenge benchmark shows that LAN reaches state-of-the-art performance.
- Score: 1.1879716317856945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many recent successful off-policy multi-agent reinforcement learning (MARL)
algorithms for cooperative partially observable environments focus on finding
factorized value functions, leading to convoluted network structures. Building
on the structure of independent Q-learners, our LAN algorithm takes a radically
different approach, leveraging a dueling architecture to learn for each agent a
decentralized best-response policies via individual advantage functions. The
learning is stabilized by a centralized critic whose primary objective is to
reduce the moving target problem of the individual advantages. The critic,
whose network's size is independent of the number of agents, is cast aside
after learning. Evaluation on the StarCraft II multi-agent challenge benchmark
shows that LAN reaches state-of-the-art performance and is highly scalable with
respect to the number of agents, opening up a promising alternative direction
for MARL research.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - ROMA-iQSS: An Objective Alignment Approach via State-Based Value Learning and ROund-Robin Multi-Agent Scheduling [44.276285521929424]
We introduce a decentralized state-based value learning algorithm that enables agents to independently discover optimal states.
Our theoretical analysis shows that our approach leads decentralized agents to an optimal collective policy.
Empirical experiments further demonstrate that our method outperforms existing decentralized state-based and action-based value learning strategies.
arXiv Detail & Related papers (2024-04-05T09:39:47Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - Inverse Factorized Q-Learning for Cooperative Multi-agent Imitation
Learning [13.060023718506917]
imitation learning (IL) is a problem of learning to mimic expert behaviors from demonstrations in cooperative multi-agent systems.
We introduce a novel multi-agent IL algorithm designed to address these challenges.
Our approach enables the centralized learning by leveraging mixing networks to aggregate decentralized Q functions.
arXiv Detail & Related papers (2023-10-10T17:11:20Z) - SACHA: Soft Actor-Critic with Heuristic-Based Attention for Partially
Observable Multi-Agent Path Finding [3.4260993997836753]
We propose a novel multi-agent actor-critic method called Soft Actor-Critic with Heuristic-Based Attention (SACHA)
SACHA learns a neural network for each agent to selectively pay attention to the shortest path guidance from multiple agents within its field of view.
We demonstrate decent improvements over several state-of-the-art learning-based MAPF methods with respect to success rate and solution quality.
arXiv Detail & Related papers (2023-07-05T23:36:33Z) - Learning From Good Trajectories in Offline Multi-Agent Reinforcement
Learning [98.07495732562654]
offline multi-agent reinforcement learning (MARL) aims to learn effective multi-agent policies from pre-collected datasets.
One agent learned by offline MARL often inherits this random policy, jeopardizing the performance of the entire team.
We propose a novel framework called Shared Individual Trajectories (SIT) to address this problem.
arXiv Detail & Related papers (2022-11-28T18:11:26Z) - Local Advantage Actor-Critic for Robust Multi-Agent Deep Reinforcement
Learning [19.519440854957633]
We propose a new multi-agent policy gradient method called Robust Local Advantage (ROLA) Actor-Critic.
ROLA allows each agent to learn an individual action-value function as a local critic as well as ameliorating environment non-stationarity.
We show ROLA's robustness and effectiveness over a number of state-of-the-art multi-agent policy gradient algorithms.
arXiv Detail & Related papers (2021-10-16T19:03:34Z) - Locality Matters: A Scalable Value Decomposition Approach for
Cooperative Multi-Agent Reinforcement Learning [52.7873574425376]
Cooperative multi-agent reinforcement learning (MARL) faces significant scalability issues due to state and action spaces that are exponentially large in the number of agents.
We propose a novel, value-based multi-agent algorithm called LOMAQ, which incorporates local rewards in the Training Decentralized Execution paradigm.
arXiv Detail & Related papers (2021-09-22T10:08:15Z) - Is Independent Learning All You Need in the StarCraft Multi-Agent
Challenge? [100.48692829396778]
Independent PPO (IPPO) is a form of independent learning in which each agent simply estimates its local value function.
IPPO's strong performance may be due to its robustness to some forms of environment non-stationarity.
arXiv Detail & Related papers (2020-11-18T20:29:59Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
Decentralized multi-agent reinforcement learning algorithms are sometimes unpractical in complicated applications.
We propose a flexible fully decentralized actor-critic MARL framework, which can handle large-scale general cooperative multi-agent setting.
Our framework can achieve scalability and stability for large-scale environment and reduce information transmission.
arXiv Detail & Related papers (2020-04-17T14:56:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.