ROMA-iQSS: An Objective Alignment Approach via State-Based Value Learning and ROund-Robin Multi-Agent Scheduling
- URL: http://arxiv.org/abs/2404.03984v1
- Date: Fri, 5 Apr 2024 09:39:47 GMT
- Title: ROMA-iQSS: An Objective Alignment Approach via State-Based Value Learning and ROund-Robin Multi-Agent Scheduling
- Authors: Chi-Hui Lin, Joewie J. Koh, Alessandro Roncone, Lijun Chen,
- Abstract summary: We introduce a decentralized state-based value learning algorithm that enables agents to independently discover optimal states.
Our theoretical analysis shows that our approach leads decentralized agents to an optimal collective policy.
Empirical experiments further demonstrate that our method outperforms existing decentralized state-based and action-based value learning strategies.
- Score: 44.276285521929424
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective multi-agent collaboration is imperative for solving complex, distributed problems. In this context, two key challenges must be addressed: first, autonomously identifying optimal objectives for collective outcomes; second, aligning these objectives among agents. Traditional frameworks, often reliant on centralized learning, struggle with scalability and efficiency in large multi-agent systems. To overcome these issues, we introduce a decentralized state-based value learning algorithm that enables agents to independently discover optimal states. Furthermore, we introduce a novel mechanism for multi-agent interaction, wherein less proficient agents follow and adopt policies from more experienced ones, thereby indirectly guiding their learning process. Our theoretical analysis shows that our approach leads decentralized agents to an optimal collective policy. Empirical experiments further demonstrate that our method outperforms existing decentralized state-based and action-based value learning strategies by effectively identifying and aligning optimal objectives.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Multi-Agent Reinforcement Learning from Human Feedback: Data Coverage and Algorithmic Techniques [65.55451717632317]
We study Multi-Agent Reinforcement Learning from Human Feedback (MARLHF), exploring both theoretical foundations and empirical validations.
We define the task as identifying Nash equilibrium from a preference-only offline dataset in general-sum games.
Our findings underscore the multifaceted approach required for MARLHF, paving the way for effective preference-based multi-agent systems.
arXiv Detail & Related papers (2024-09-01T13:14:41Z) - Joint Intrinsic Motivation for Coordinated Exploration in Multi-Agent
Deep Reinforcement Learning [0.0]
We propose an approach for rewarding strategies where agents collectively exhibit novel behaviors.
Jim rewards joint trajectories based on a centralized measure of novelty designed to function in continuous environments.
Results show that joint exploration is crucial for solving tasks where the optimal strategy requires a high level of coordination.
arXiv Detail & Related papers (2024-02-06T13:02:00Z) - Macro-Action-Based Multi-Agent/Robot Deep Reinforcement Learning under
Partial Observability [4.111899441919164]
State-of-the-art multi-agent reinforcement learning (MARL) methods have provided promising solutions to a variety of complex problems.
We first propose a group of value-based RL approaches for MacDec-POMDPs.
We formulate a set of macro-action-based policy gradient algorithms under the three training paradigms.
arXiv Detail & Related papers (2022-09-20T21:13:51Z) - Hierarchical Reinforcement Learning with Opponent Modeling for
Distributed Multi-agent Cooperation [13.670618752160594]
Deep reinforcement learning (DRL) provides a promising approach for multi-agent cooperation through the interaction of the agents and environments.
Traditional DRL solutions suffer from the high dimensions of multiple agents with continuous action space during policy search.
We propose a hierarchical reinforcement learning approach with high-level decision-making and low-level individual control for efficient policy search.
arXiv Detail & Related papers (2022-06-25T19:09:29Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
We propose a cooperative multi-agent meta-learning algorithm, referred to as MAML or Dif-MAML.
We show that the proposed strategy allows a collection of agents to attain agreement at a linear rate and to converge to a stationary point of the aggregate MAML.
Simulation results illustrate the theoretical findings and the superior performance relative to the traditional non-cooperative setting.
arXiv Detail & Related papers (2020-10-06T16:51:09Z) - Learning Implicit Credit Assignment for Cooperative Multi-Agent
Reinforcement Learning [31.147638213056872]
We present a multi-agent actor-critic method that aims to implicitly address the credit assignment problem under fully cooperative settings.
Our key motivation is that credit assignment among agents may not require an explicit formulation as long as the policy gradients from a centralized critic carry sufficient information for the decentralized agents to maximize their joint action value.
Our algorithm, referred to as LICA, is evaluated on several benchmarks including the multi-agent particle environments and a set of challenging Star II micromanagement tasks.
arXiv Detail & Related papers (2020-07-06T05:25:02Z) - Decentralized Reinforcement Learning: Global Decision-Making via Local
Economic Transactions [80.49176924360499]
We establish a framework for directing a society of simple, specialized, self-interested agents to solve sequential decision problems.
We derive a class of decentralized reinforcement learning algorithms.
We demonstrate the potential advantages of a society's inherent modular structure for more efficient transfer learning.
arXiv Detail & Related papers (2020-07-05T16:41:09Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
Decentralized multi-agent reinforcement learning algorithms are sometimes unpractical in complicated applications.
We propose a flexible fully decentralized actor-critic MARL framework, which can handle large-scale general cooperative multi-agent setting.
Our framework can achieve scalability and stability for large-scale environment and reduce information transmission.
arXiv Detail & Related papers (2020-04-17T14:56:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.