論文の概要: Newsvendor Model with Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2112.12544v1
- Date: Wed, 22 Dec 2021 05:52:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-24 16:34:38.018379
- Title: Newsvendor Model with Deep Reinforcement Learning
- Title(参考訳): 深層強化学習を用いたニューズベンドルモデル
- Authors: Dylan K. Goetting
- Abstract要約: 本稿では,Newsvendorモデルとして知られる数学的問題に対する深層強化学習(RL)ソリューションを提案する。
Twin-Delayed Deep Deterministic Policy Gradientエージェントをアクターと批評家ネットワークの両方で使用して、この問題を解決しました。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: I present a deep reinforcement learning (RL) solution to the mathematical
problem known as the Newsvendor model, which seeks to optimize profit given a
probabilistic demand distribution. To reflect a more realistic and complex
situation, the demand distribution can change for different days of the week,
thus changing the optimum behavior. I used a Twin-Delayed Deep Deterministic
Policy Gradient agent (written as completely original code) with both an actor
and critic network to solve this problem. The agent was able to learn optimal
behavior consistent with the analytical solution of the problem, and could
identify separate probability distributions for different days of the week and
behave accordingly.
- Abstract(参考訳): 本稿では,確率的需要分布から得られる利益を最適化するNewsvendorモデルと呼ばれる数学的問題に対する深層強化学習(RL)ソリューションを提案する。
より現実的で複雑な状況を反映して、需要分布は週ごとに変化し、最適な行動を変えることができる。
Twin-Delayed Deep Deterministic Policy Gradient Agent(完全にオリジナルコードとして書かれる)をアクターと批評家ネットワークの両方で使用して、この問題を解決しました。
エージェントは、問題の分析解と一致する最適な振る舞いを学習することができ、週の異なる日に異なる確率分布を識別し、それに応じて振る舞うことができた。
関連論文リスト
- Dual-Agent Deep Reinforcement Learning for Dynamic Pricing and Replenishment [15.273192037219077]
不整合決定周波数下での動的価格設定と補充問題について検討する。
我々は、包括的な市場データに基づいてトレーニングされた決定木に基づく機械学習アプローチを統合する。
このアプローチでは、2つのエージェントが価格と在庫を処理し、さまざまなスケールで更新される。
論文 参考訳(メタデータ) (2024-10-28T15:12:04Z) - Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - Distributional Successor Features Enable Zero-Shot Policy Optimization [36.53356539916603]
本研究は、ゼロショットポリシー最適化のための分散継承機能(DiSPO)という、新しいモデルのクラスを提案する。
DiSPOは、定常データセットの行動ポリシーの後継機能の分布と、データセット内で達成可能な異なる後継機能を実現するためのポリシーを学ぶ。
データセットの長期的な結果を直接モデル化することにより、DiSPOは、報酬関数をまたいだゼロショットポリシー最適化のための単純なスキームを実現しつつ、複雑なエラーを避けることができる。
論文 参考訳(メタデータ) (2024-03-10T22:27:21Z) - Scalable Decentralized Algorithms for Online Personalized Mean Estimation [12.002609934938224]
本研究は,各エージェントが実数値分布からサンプルを収集し,その平均値を推定する,オーバーアーキシング問題の簡易版に焦点を当てた。
1つは信念の伝播からインスピレーションを得ており、もう1つはコンセンサスに基づくアプローチを採用している。
論文 参考訳(メタデータ) (2024-02-20T08:30:46Z) - Adversarial Imitation Learning On Aggregated Data [0.0]
逆強化学習(IRL: Inverse Reinforcement Learning)は、いくつかの専門家による実証から最適なポリシーを学習し、適切な報酬関数を指定するという面倒なプロセスを避ける。
本稿では,AILAD(Adversarial Imitation Learning on Aggregated Data)と呼ばれる動的適応手法を用いて,これらの要件を除去する手法を提案する。
非線型報酬関数とそれに付随する最適ポリシーの両方を、敵対的枠組みを用いて共役的に学習する。
論文 参考訳(メタデータ) (2023-11-14T22:13:38Z) - Value-Distributional Model-Based Reinforcement Learning [59.758009422067]
政策の長期的業績に関する不確実性の定量化は、シーケンシャルな意思決定タスクを解決するために重要である。
モデルに基づくベイズ強化学習の観点から問題を考察する。
本稿では,値分布関数を学習するモデルに基づくアルゴリズムであるEpicemic Quantile-Regression(EQR)を提案する。
論文 参考訳(メタデータ) (2023-08-12T14:59:19Z) - Learning To Dive In Branch And Bound [95.13209326119153]
グラフニューラルネットワークを用いて特定の潜水構造を学習するためのL2Diveを提案する。
我々は、変数の割り当てを予測するために生成モデルを訓練し、線形プログラムの双対性を利用して潜水決定を行う。
論文 参考訳(メタデータ) (2023-01-24T12:01:45Z) - Generalized Differentiable RANSAC [95.95627475224231]
$nabla$-RANSACは、ランダム化された堅牢な推定パイプライン全体を学ぶことができる、微分可能なRANSACである。
$nabla$-RANSACは、精度という点では最先端のシステムよりも優れているが、精度は低い。
論文 参考訳(メタデータ) (2022-12-26T15:13:13Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
置換フローショップスケジューリング(PFSS)は製造業で広く使われている。
我々は,より安定かつ正確に収束を加速する専門家主導の模倣学習を通じてモデルを訓練することを提案する。
我々のモデルのネットワークパラメータはわずか37%に減少し、エキスパートソリューションに対する我々のモデルの解のギャップは平均6.8%から1.3%に減少する。
論文 参考訳(メタデータ) (2022-10-31T09:46:26Z) - An actor-critic algorithm with policy gradients to solve the job shop
scheduling problem using deep double recurrent agents [1.3812010983144802]
ジョブショップスケジューリング問題(JSSP)に対する深層強化学習手法を提案する。
目的は、ジョブやマシンの数によって異なるJSSPインスタンスのディストリビューションについて学べるgreedyのようなものを構築することである。
予想通り、モデルはある程度は、トレーニングで使用されるものと異なる分布から生じるより大きな問題やインスタンスに一般化することができる。
論文 参考訳(メタデータ) (2021-10-18T07:55:39Z) - Dynamic Federated Learning [57.14673504239551]
フェデレートラーニング(Federated Learning)は、マルチエージェント環境における集中的なコーディネーション戦略の包括的用語として登場した。
我々は、各イテレーションにおいて、利用可能なエージェントのランダムなサブセットがそのデータに基づいてローカル更新を実行する、フェデレートされた学習モデルを考える。
集約最適化問題に対する真の最小化器上の非定常ランダムウォークモデルの下で、アーキテクチャの性能は、各エージェントにおけるデータ変動率、各エージェントにおけるモデル変動率、アルゴリズムの学習率に逆比例する追跡項の3つの要因によって決定されることを示す。
論文 参考訳(メタデータ) (2020-02-20T15:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。