A machine learning analysis of the relationship between some underlying
medical conditions and COVID-19 susceptibility
- URL: http://arxiv.org/abs/2112.12901v1
- Date: Fri, 24 Dec 2021 01:36:57 GMT
- Title: A machine learning analysis of the relationship between some underlying
medical conditions and COVID-19 susceptibility
- Authors: Mostafa Rezapour, Colin A. Varady
- Abstract summary: The Coronavirus, commonly known as COVID-19, has significantly affected the lives of all citizens residing in the United States.
Several vaccines and boosters have been created as a permanent remedy for individuals to take advantage of.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For the past couple years, the Coronavirus, commonly known as COVID-19, has
significantly affected the daily lives of all citizens residing in the United
States by imposing several, fatal health risks that cannot go unnoticed. In
response to the growing fear and danger COVID-19 inflicts upon societies in the
USA, several vaccines and boosters have been created as a permanent remedy for
individuals to take advantage of. In this paper, we investigate the
relationship between the COVID-19 vaccines and boosters and the total case
count for the Coronavirus across multiple states in the USA. Additionally, this
paper discusses the relationship between several, selected underlying health
conditions with COVID-19. To discuss these relationships effectively, this
paper will utilize statistical tests and machine learning methods for analysis
and discussion purposes. Furthermore, this paper reflects upon conclusions made
about the relationship between educational attainment, race, and COVID-19 and
the possible connections that can be established with underlying health
conditions, vaccination rates, and COVID-19 total case and death counts.
Related papers
- Population Age Group Sensitivity for COVID-19 Infections with Deep
Learning [0.0]
The COVID-19 pandemic has created unprecedented challenges for governments and healthcare systems worldwide.
This study aimed to identify the most influential age groups in COVID-19 infection rates at the US county level.
arXiv Detail & Related papers (2023-07-03T04:56:55Z) - "COVID-19 was a FIFA conspiracy #curropt": An Investigation into the
Viral Spread of COVID-19 Misinformation [60.268682953952506]
We estimate the extent to which misinformation has influenced the course of the COVID-19 pandemic using natural language processing models.
We provide a strategy to combat social media posts that are likely to cause widespread harm.
arXiv Detail & Related papers (2022-06-12T19:41:01Z) - Modeling the effect of the vaccination campaign on the Covid-19 pandemic [0.0]
We introduce SAIVR, a mathematical model able to forecast the Covid-19 epidemic evolution during the vaccination campaign.
The model contains several parameters and initial conditions that are estimated by employing a semi-supervised machine learning procedure.
Instructed by these results, we performed an extensive study on the temporal evolution of the pandemic under varying values of roll-out daily rates, vaccine efficacy, and a broad range of societal vaccine hesitancy/denial levels.
arXiv Detail & Related papers (2021-08-27T19:12:13Z) - Artificial Intelligence (AI) and Big Data for Coronavirus (COVID-19)
Pandemic: A Survey on the State-of-the-Arts [10.741018907229927]
The very first infected novel coronavirus case (COVID-19) was found in Hubei, China in Dec. 2019.
The COVID-19 pandemic has spread over 214 countries and areas in the world, and has significantly affected every aspect of our daily lives.
Motivated by recent advances and applications of artificial intelligence (AI) and big data in various areas, this paper aims at emphasizing their importance in responding to the COVID-19 outbreak.
arXiv Detail & Related papers (2021-07-17T13:12:30Z) - A New Screening Method for COVID-19 based on Ocular Feature Recognition
by Machine Learning Tools [66.20818586629278]
Coronavirus disease 2019 (COVID-19) has affected several million people.
New screening method of analyzing the eye-region images, captured by common CCD and CMOS cameras, could reliably make a rapid risk screening of COVID-19.
arXiv Detail & Related papers (2020-09-04T00:50:27Z) - COVID-19 Pandemic Outbreak in the Subcontinent: A data-driven analysis [0.8057708414390126]
COVID-19 virus emerged in late December 2019 in Wuhan city, Hubei, China.
Numerous studies claim that the subcontinent could remain in the worst affected region by the COVID-19.
This paper uses publicly available epidemiological data of Bangladesh, India, and Pakistan to estimate the reproduction numbers.
arXiv Detail & Related papers (2020-08-22T10:40:17Z) - Understanding the temporal evolution of COVID-19 research through
machine learning and natural language processing [66.63200823918429]
The outbreak of the novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been continuously affecting human lives and communities around the world.
We used multiple data sources, i.e., PubMed and ArXiv, and built several machine learning models to characterize the landscape of current COVID-19 research.
Our findings confirm the types of research available in PubMed and ArXiv differ significantly, with the former exhibiting greater diversity in terms of COVID-19 related issues.
arXiv Detail & Related papers (2020-07-22T18:02:39Z) - Effectiveness and Compliance to Social Distancing During COVID-19 [72.94965109944707]
We use a detailed set of mobility data to evaluate the impact that stay-at-home orders had on the spread of COVID-19 in the US.
We show that there is a unidirectional Granger causality, from the median percentage of time spent daily at home to the daily number of COVID-19-related deaths with a lag of 2 weeks.
arXiv Detail & Related papers (2020-06-23T03:36:19Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
We train on Italy's early COVID-19 outbreak through Twitter and transfer to several other countries.
Our experiments show strong results with up to 0.85 Spearman correlation in cross-country predictions.
arXiv Detail & Related papers (2020-06-05T02:04:25Z) - Mapping the Landscape of Artificial Intelligence Applications against
COVID-19 [59.30734371401316]
COVID-19, the disease caused by the SARS-CoV-2 virus, has been declared a pandemic by the World Health Organization.
We present an overview of recent studies using Machine Learning and, more broadly, Artificial Intelligence to tackle many aspects of the COVID-19 crisis.
arXiv Detail & Related papers (2020-03-25T12:30:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.