Population Age Group Sensitivity for COVID-19 Infections with Deep
Learning
- URL: http://arxiv.org/abs/2307.00751v1
- Date: Mon, 3 Jul 2023 04:56:55 GMT
- Title: Population Age Group Sensitivity for COVID-19 Infections with Deep
Learning
- Authors: Md Khairul Islam, Tyler Valentine, Royal Wang, Levi Davis, Matt
Manner, Judy Fox
- Abstract summary: The COVID-19 pandemic has created unprecedented challenges for governments and healthcare systems worldwide.
This study aimed to identify the most influential age groups in COVID-19 infection rates at the US county level.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The COVID-19 pandemic has created unprecedented challenges for governments
and healthcare systems worldwide, highlighting the critical importance of
understanding the factors that contribute to virus transmission. This study
aimed to identify the most influential age groups in COVID-19 infection rates
at the US county level using the Modified Morris Method and deep learning for
time series. Our approach involved training the state-of-the-art time-series
model Temporal Fusion Transformer on different age groups as a static feature
and the population vaccination status as the dynamic feature. We analyzed the
impact of those age groups on COVID-19 infection rates by perturbing individual
input features and ranked them based on their Morris sensitivity scores, which
quantify their contribution to COVID-19 transmission rates. The findings are
verified using ground truth data from the CDC and US Census, which provide the
true infection rates for each age group. The results suggest that young adults
were the most influential age group in COVID-19 transmission at the county
level between March 1, 2020, and November 27, 2021. Using these results can
inform public health policies and interventions, such as targeted vaccination
strategies, to better control the spread of the virus. Our approach
demonstrates the utility of feature sensitivity analysis in identifying
critical factors contributing to COVID-19 transmission and can be applied in
other public health domains.
Related papers
- Dense Feature Memory Augmented Transformers for COVID-19 Vaccination
Search Classification [60.49594822215981]
This paper presents a classification model for detecting COVID-19 vaccination related search queries.
We propose a novel approach of considering dense features as memory tokens that the model can attend to.
We show that this new modeling approach enables a significant improvement to the Vaccine Search Insights (VSI) task.
arXiv Detail & Related papers (2022-12-16T13:57:41Z) - Factors affecting the COVID-19 risk in the US counties: an innovative
approach by combining unsupervised and supervised learning [0.0]
factors that could affect the risk of COVID-19 infection and mortality were analyzed in county level.
Results showed that mean temperature, percent of people below poverty, percent of adults with obesity, air pressure, population density, wind speed, longitude, and percent of uninsured people were the most significant attributes.
arXiv Detail & Related papers (2021-06-24T04:29:00Z) - Machine Learning on the COVID-19 Pandemic, Human Mobility and Air
Quality: A Review [0.0]
This study aims to analyze results from past research to understand the interactions among the COVID-19 pandemic, lockdown measures, human mobility, and air quality.
ML is a powerful, effective, and robust analytic paradigm to handle complex and wicked problems such as a global pandemic.
arXiv Detail & Related papers (2021-03-13T10:08:24Z) - COVID-19 Outbreak Prediction and Analysis using Self Reported Symptoms [12.864257751458712]
We use self-reported symptoms survey data to understand trends in the spread of COVID-19.
From our studies, we try to predict the likely % of the population that tested positive for COVID-19 based on self-reported symptoms.
We forecast that % of the population having COVID-19-like illness (CLI) and those tested positive as 0.15% and 1.14% absolute error respectively.
arXiv Detail & Related papers (2020-12-21T00:37:24Z) - Classification supporting COVID-19 diagnostics based on patient survey
data [82.41449972618423]
logistic regression and XGBoost classifiers, that allow for effective screening of patients for COVID-19 were generated.
The obtained classification models provided the basis for the DECODE service (decode.polsl.pl), which can serve as support in screening patients with COVID-19 disease.
This data set consists of more than 3,000 examples is based on questionnaires collected at a hospital in Poland.
arXiv Detail & Related papers (2020-11-24T17:44:01Z) - Analysing the impact of global demographic characteristics over the
COVID-19 spread using class rule mining and pattern matching [8.025086113117291]
This study presents an intelligent approach to investigate the multi-dimensional associations between demographic attributes and COVID-19 global variations.
We gather multiple demographic attributes and COVID-19 infection data from reliable sources, which are then processed by intelligent algorithms to identify the significant associations and patterns within the data.
arXiv Detail & Related papers (2020-09-27T18:43:18Z) - Steering a Historical Disease Forecasting Model Under a Pandemic: Case
of Flu and COVID-19 [75.99038202534628]
We propose CALI-Net, a neural transfer learning architecture which allows us to'steer' a historical disease forecasting model to new scenarios where flu and COVID co-exist.
Our experiments demonstrate that our approach is successful in adapting a historical forecasting model to the current pandemic.
arXiv Detail & Related papers (2020-09-23T22:35:43Z) - COVID-19 Pandemic Outbreak in the Subcontinent: A data-driven analysis [0.8057708414390126]
COVID-19 virus emerged in late December 2019 in Wuhan city, Hubei, China.
Numerous studies claim that the subcontinent could remain in the worst affected region by the COVID-19.
This paper uses publicly available epidemiological data of Bangladesh, India, and Pakistan to estimate the reproduction numbers.
arXiv Detail & Related papers (2020-08-22T10:40:17Z) - Understanding the temporal evolution of COVID-19 research through
machine learning and natural language processing [66.63200823918429]
The outbreak of the novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been continuously affecting human lives and communities around the world.
We used multiple data sources, i.e., PubMed and ArXiv, and built several machine learning models to characterize the landscape of current COVID-19 research.
Our findings confirm the types of research available in PubMed and ArXiv differ significantly, with the former exhibiting greater diversity in terms of COVID-19 related issues.
arXiv Detail & Related papers (2020-07-22T18:02:39Z) - Effectiveness and Compliance to Social Distancing During COVID-19 [72.94965109944707]
We use a detailed set of mobility data to evaluate the impact that stay-at-home orders had on the spread of COVID-19 in the US.
We show that there is a unidirectional Granger causality, from the median percentage of time spent daily at home to the daily number of COVID-19-related deaths with a lag of 2 weeks.
arXiv Detail & Related papers (2020-06-23T03:36:19Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
We train on Italy's early COVID-19 outbreak through Twitter and transfer to several other countries.
Our experiments show strong results with up to 0.85 Spearman correlation in cross-country predictions.
arXiv Detail & Related papers (2020-06-05T02:04:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.