論文の概要: Fine-Tuning Data Structures for Analytical Query Processing
- arxiv url: http://arxiv.org/abs/2112.13099v1
- Date: Fri, 24 Dec 2021 16:36:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-28 17:34:17.763853
- Title: Fine-Tuning Data Structures for Analytical Query Processing
- Title(参考訳): 解析クエリ処理のための微調整データ構造
- Authors: Amir Shaikhha, Marios Kelepeshis, Mahdi Ghorbani
- Abstract要約: 分析ワークロードの効率的な計算を支援するために,データ構造を自動的に選択するフレームワークを提案する。
本稿では,クエリ処理パラダイムの背景にあるアルゴリズムを表現可能な,新しい低レベル中間言語を提案する。
我々は,我々のフレームワークが生成したコードの性能が,最先端の分析クエリエンジンに匹敵するか,あるいは同等であることを示す。
- 参考スコア(独自算出の注目度): 0.5156484100374058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a framework for automatically choosing data structures to
support efficient computation of analytical workloads. Our contributions are
twofold. First, we introduce a novel low-level intermediate language that can
express the algorithms behind various query processing paradigms such as
classical joins, groupjoin, and in-database machine learning engines. This
language is designed around the notion of dictionaries, and allows for a more
fine-grained choice of its low-level implementation. Second, the cost model for
alternative implementations is automatically inferred by combining machine
learning and program reasoning. The dictionary cost model is learned using a
regression model trained over the profiling dataset of dictionary operations on
a given hardware architecture. The program cost model is inferred using static
program analysis.
Our experimental results show the effectiveness of the trained cost model on
micro benchmarks. Furthermore, we show that the performance of the code
generated by our framework either outperforms or is on par with the
state-of-the-art analytical query engines and a recent in-database machine
learning framework.
- Abstract(参考訳): 分析ワークロードの効率的な計算を支援するために,データ構造を自動的に選択するフレームワークを提案する。
私たちの貢献は2倍です。
まず,古典結合やgroupjoin,データベース内機械学習エンジンなど,さまざまなクエリ処理パラダイムの背後にあるアルゴリズムを表現可能な,新しい低レベル中間言語を提案する。
この言語は辞書の概念に基づいて設計されており、低レベルの実装をより細かく選択することができる。
次に、機械学習とプログラム推論を組み合わせることで、代替実装のコストモデルを自動的に推論する。
辞書コストモデルは、所定のハードウェアアーキテクチャ上の辞書操作のプロファイリングデータセット上で訓練された回帰モデルを用いて学習される。
プログラムコストモデルは静的プログラム解析を用いて推定される。
実験の結果,マイクロベンチマークにおける訓練コストモデルの有効性が示された。
さらに、我々のフレームワークが生成したコードの性能は、最先端の分析クエリエンジンと最近のデータベース内機械学習フレームワークに匹敵するか、同等であることを示す。
関連論文リスト
- UQE: A Query Engine for Unstructured Databases [71.49289088592842]
構造化されていないデータ分析を可能にするために,大規模言語モデルの可能性を検討する。
本稿では,非構造化データ収集からの洞察を直接問合せ,抽出するUniversal Query Engine (UQE)を提案する。
論文 参考訳(メタデータ) (2024-06-23T06:58:55Z) - Leveraging Reinforcement Learning and Large Language Models for Code
Optimization [14.602997316032706]
本稿では,コード最適化の複雑さを低減するための新しいフレームワークを提案する。
提案するフレームワークは,大規模言語モデル(LLM)と強化学習(RL)に基づく。
我々は,新しい強化学習アルゴリズムであるCodeT5言語モデルとRRHFを用いて,PIEデータセット上でいくつかの実験を行った。
論文 参考訳(メタデータ) (2023-12-09T19:50:23Z) - Context-Aware Ensemble Learning for Time Series [11.716677452529114]
本稿では,ベースモデルの特徴ベクトルの結合である特徴のスーパーセットを用いて,ベースモデル予測を効果的に組み合わせたメタ学習手法を提案する。
我々のモデルは、ベースモデルの予測を機械学習アルゴリズムの入力として使用するのではなく、問題の状態に基づいて各時点における最良の組み合わせを選択する。
論文 参考訳(メタデータ) (2022-11-30T10:36:13Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
自動回帰言語モデルは、回答を生成するデファクト標準として現れています。
これまでの研究は、探索空間を階層構造に分割する方法を探究してきた。
本研究では,検索空間の任意の構造を強制しない代替として,経路内のすべてのngramを識別子として使用することを提案する。
論文 参考訳(メタデータ) (2022-04-22T10:45:01Z) - Efficient Sub-structured Knowledge Distillation [52.5931565465661]
定式化においてよりシンプルで,既存のアプローチよりもはるかに効率的にトレーニングできるアプローチを提案する。
教師モデルから学生モデルへの知識の伝達は、出力空間全体ではなく、すべてのサブ構造上の予測を局所的に一致させることで行う。
論文 参考訳(メタデータ) (2022-03-09T15:56:49Z) - Leveraging Advantages of Interactive and Non-Interactive Models for
Vector-Based Cross-Lingual Information Retrieval [12.514666775853598]
対話型モデルと非対話型モデルの利点を活用する新しいフレームワークを提案する。
非対話型アーキテクチャ上でモデルを構築できる半対話型機構を導入するが、各文書を関連付けられた多言語クエリと共にエンコードする。
本手法は,計算効率を維持しながら検索精度を大幅に向上させる。
論文 参考訳(メタデータ) (2021-11-03T03:03:19Z) - Learning to Synthesize Data for Semantic Parsing [57.190817162674875]
本稿では,プログラムの構成をモデル化し,プログラムを発話にマップする生成モデルを提案する。
PCFGと事前学習されたBARTの簡易性により,既存のデータから効率的に生成モデルを学習することができる。
GeoQuery と Spider の標準ベンチマークで解析する text-to-Query の in-domain と out-of-domain の両方で、この手法を評価します。
論文 参考訳(メタデータ) (2021-04-12T21:24:02Z) - Comparative Code Structure Analysis using Deep Learning for Performance
Prediction [18.226950022938954]
本稿では,アプリケーションの静的情報(抽象構文木やASTなど)を用いてコード構造の変化に基づいて性能変化を予測することの実現可能性を評価することを目的とする。
組込み学習手法の評価により,木系長短メモリ(LSTM)モデルでは,ソースコードの階層構造を利用して遅延表現を発見し,最大84%(個人的問題)と73%(複数の問題を含む組み合わせデータセット)の精度で性能変化を予測できることが示された。
論文 参考訳(メタデータ) (2021-02-12T16:59:12Z) - StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics [4.237343083490243]
機械学習(ML)では、バッグング、ブースティング、スタックングといったアンサンブル手法が広く確立されている。
StackGenVisは、スタック化された一般化のためのビジュアル分析システムである。
論文 参考訳(メタデータ) (2020-05-04T15:43:55Z) - Multi-layer Optimizations for End-to-End Data Analytics [71.05611866288196]
代替アプローチを実現するフレームワークであるIFAQ(Iterative Functional Aggregate Queries)を紹介する。
IFAQは、特徴抽出クエリと学習タスクを、IFAQのドメイン固有言語で与えられた1つのプログラムとして扱う。
IFAQ の Scala 実装が mlpack,Scikit,特殊化を数桁で上回り,線形回帰木モデルや回帰木モデルを複数の関係データセット上で処理可能であることを示す。
論文 参考訳(メタデータ) (2020-01-10T16:14:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。