Meta-Learned Feature Critics for Domain Generalized Semantic
Segmentation
- URL: http://arxiv.org/abs/2112.13538v1
- Date: Mon, 27 Dec 2021 06:43:39 GMT
- Title: Meta-Learned Feature Critics for Domain Generalized Semantic
Segmentation
- Authors: Zu-Yun Shiau, Wei-Wei Lin, Ci-Siang Lin, Yu-Chiang Frank Wang
- Abstract summary: We propose a novel meta-learning scheme with feature disentanglement ability, which derives domain-invariant features for semantic segmentation with domain generalization guarantees.
Our results on benchmark datasets confirm the effectiveness and robustness of our proposed model.
- Score: 38.81908956978064
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: How to handle domain shifts when recognizing or segmenting visual data across
domains has been studied by learning and vision communities. In this paper, we
address domain generalized semantic segmentation, in which the segmentation
model is trained on multiple source domains and is expected to generalize to
unseen data domains. We propose a novel meta-learning scheme with feature
disentanglement ability, which derives domain-invariant features for semantic
segmentation with domain generalization guarantees. In particular, we introduce
a class-specific feature critic module in our framework, enforcing the
disentangled visual features with domain generalization guarantees. Finally,
our quantitative results on benchmark datasets confirm the effectiveness and
robustness of our proposed model, performing favorably against state-of-the-art
domain adaptation and generalization methods in segmentation.
Related papers
- MetaDefa: Meta-learning based on Domain Enhancement and Feature
Alignment for Single Domain Generalization [12.095382249996032]
A novel meta-learning method based on domain enhancement and feature alignment (MetaDefa) is proposed to improve the model generalization performance.
In this paper, domain-invariant features can be fully explored by focusing on similar target regions between source and augmented domains feature space.
Extensive experiments on two publicly available datasets show that MetaDefa has significant generalization performance advantages in unknown multiple target domains.
arXiv Detail & Related papers (2023-11-27T15:13:02Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
We introduce Style-induced Domain-specific Normalization (SDNorm) to re-normalize the multi-modal underlying distributions.
We harness the prototype representations, the centroids of classes, to perform relational modeling in the embedding space.
Experiments on four standard Domain Generalization benchmarks reveal that COMEN exceeds the state-of-the-art performance without the need of domain supervision.
arXiv Detail & Related papers (2022-03-24T11:54:59Z) - Exploiting Domain-Specific Features to Enhance Domain Generalization [10.774902700296249]
Domain Generalization (DG) aims to train a model, from multiple observed source domains, in order to perform well on unseen target domains.
Prior DG approaches have focused on extracting domain-invariant information across sources to generalize on target domains.
We propose meta-Domain Specific-Domain Invariant (mD) - a novel theoretically sound framework.
arXiv Detail & Related papers (2021-10-18T15:42:39Z) - Context-Conditional Adaptation for Recognizing Unseen Classes in Unseen
Domains [48.17225008334873]
We propose a feature generative framework integrated with a COntext COnditional Adaptive (COCOA) Batch-Normalization.
The generated visual features better capture the underlying data distribution enabling us to generalize to unseen classes and domains at test-time.
We thoroughly evaluate and analyse our approach on established large-scale benchmark - DomainNet.
arXiv Detail & Related papers (2021-07-15T17:51:16Z) - Structured Latent Embeddings for Recognizing Unseen Classes in Unseen
Domains [108.11746235308046]
We propose a novel approach that learns domain-agnostic structured latent embeddings by projecting images from different domains.
Our experiments on the challenging DomainNet and DomainNet-LS benchmarks show the superiority of our approach over existing methods.
arXiv Detail & Related papers (2021-07-12T17:57:46Z) - Adaptive Domain-Specific Normalization for Generalizable Person
Re-Identification [81.30327016286009]
We propose a novel adaptive domain-specific normalization approach (AdsNorm) for generalizable person Re-ID.
In this work, we propose a novel adaptive domain-specific normalization approach (AdsNorm) for generalizable person Re-ID.
arXiv Detail & Related papers (2021-05-07T02:54:55Z) - Cluster, Split, Fuse, and Update: Meta-Learning for Open Compound Domain
Adaptive Semantic Segmentation [102.42638795864178]
We propose a principled meta-learning based approach to OCDA for semantic segmentation.
We cluster target domain into multiple sub-target domains by image styles, extracted in an unsupervised manner.
A meta-learner is thereafter deployed to learn to fuse sub-target domain-specific predictions, conditioned upon the style code.
We learn to online update the model by model-agnostic meta-learning (MAML) algorithm, thus to further improve generalization.
arXiv Detail & Related papers (2020-12-15T13:21:54Z) - Learning to Learn with Variational Information Bottleneck for Domain
Generalization [128.90691697063616]
Domain generalization models learn to generalize to previously unseen domains, but suffer from prediction uncertainty and domain shift.
We introduce a probabilistic meta-learning model for domain generalization, in which parameters shared across domains are modeled as distributions.
To deal with domain shift, we learn domain-invariant representations by the proposed principle of meta variational information bottleneck, we call MetaVIB.
arXiv Detail & Related papers (2020-07-15T12:05:52Z) - Generalizable Model-agnostic Semantic Segmentation via Target-specific
Normalization [24.14272032117714]
We propose a novel domain generalization framework for the generalizable semantic segmentation task.
We exploit the model-agnostic learning to simulate the domain shift problem.
Considering the data-distribution discrepancy between seen source and unseen target domains, we develop the target-specific normalization scheme.
arXiv Detail & Related papers (2020-03-27T09:25:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.