FitAct: Error Resilient Deep Neural Networks via Fine-Grained
Post-Trainable Activation Functions
- URL: http://arxiv.org/abs/2112.13544v1
- Date: Mon, 27 Dec 2021 07:07:50 GMT
- Title: FitAct: Error Resilient Deep Neural Networks via Fine-Grained
Post-Trainable Activation Functions
- Authors: Behnam Ghavami, Mani Sadati, Zhenman Fang, and Lesley Shannon
- Abstract summary: Deep neural networks (DNNs) are increasingly being deployed in safety-critical systems such as personal healthcare devices and self-driving cars.
In this paper, we propose FitAct, a low-cost approach to enhance the error resilience of DNNs by deploying fine-grained post-trainable activation functions.
- Score: 0.05249805590164901
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks (DNNs) are increasingly being deployed in
safety-critical systems such as personal healthcare devices and self-driving
cars. In such DNN-based systems, error resilience is a top priority since
faults in DNN inference could lead to mispredictions and safety hazards. For
latency-critical DNN inference on resource-constrained edge devices, it is
nontrivial to apply conventional redundancy-based fault tolerance techniques.
In this paper, we propose FitAct, a low-cost approach to enhance the error
resilience of DNNs by deploying fine-grained post-trainable activation
functions. The main idea is to precisely bound the activation value of each
individual neuron via neuron-wise bounded activation functions so that it could
prevent fault propagation in the network. To avoid complex DNN model
re-training, we propose to decouple the accuracy training and resilience
training and develop a lightweight post-training phase to learn these
activation functions with precise bound values. Experimental results on widely
used DNN models such as AlexNet, VGG16, and ResNet50 demonstrate that FitAct
outperforms state-of-the-art studies such as Clip-Act and Ranger in enhancing
the DNN error resilience for a wide range of fault rates while adding
manageable runtime and memory space overheads.
Related papers
- Harnessing Neuron Stability to Improve DNN Verification [42.65507402735545]
We present VeriStable, a novel extension of recently proposed DPLL-based constraint DNN verification approach.
We evaluate the effectiveness of VeriStable across a range of challenging benchmarks including fully-connected feed networks (FNNs), convolutional neural networks (CNNs) and residual networks (ResNets)
Preliminary results show that VeriStable is competitive and outperforms state-of-the-art verification tools, including $alpha$-$beta$-CROWN and MN-BaB, the first and second performers of the VNN-COMP, respectively.
arXiv Detail & Related papers (2024-01-19T23:48:04Z) - Special Session: Approximation and Fault Resiliency of DNN Accelerators [0.9126382223122612]
This paper explores the approximation and fault resiliency of Deep Neural Network accelerators.
We propose to use approximate (AxC) arithmetic circuits to emulate errors in hardware without performing fault injection on the DNN.
We also propose a fine-grain analysis of fault resiliency by examining fault propagation and masking in networks.
arXiv Detail & Related papers (2023-05-31T19:27:45Z) - Linearity Grafting: Relaxed Neuron Pruning Helps Certifiable Robustness [172.61581010141978]
Certifiable robustness is a desirable property for adopting deep neural networks (DNNs) in safety-critical scenarios.
We propose a novel solution to strategically manipulate neurons, by "grafting" appropriate levels of linearity.
arXiv Detail & Related papers (2022-06-15T22:42:29Z) - Fault-Aware Design and Training to Enhance DNNs Reliability with
Zero-Overhead [67.87678914831477]
Deep Neural Networks (DNNs) enable a wide series of technological advancements.
Recent findings indicate that transient hardware faults may corrupt the models prediction dramatically.
In this work, we propose to tackle the reliability issue both at training and model design time.
arXiv Detail & Related papers (2022-05-28T13:09:30Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Black-box Safety Analysis and Retraining of DNNs based on Feature
Extraction and Clustering [0.9590956574213348]
We propose SAFE, a black-box approach to automatically characterize the root causes of DNN errors.
It relies on a transfer learning model pre-trained on ImageNet to extract the features from error-inducing images.
It then applies a density-based clustering algorithm to detect arbitrary shaped clusters of images modeling plausible causes of error.
arXiv Detail & Related papers (2022-01-13T17:02:57Z) - FAT: Training Neural Networks for Reliable Inference Under Hardware
Faults [3.191587417198382]
We present a novel methodology called fault-aware training (FAT), which includes error modeling during neural network (NN) training, to make QNNs resilient to specific fault models on the device.
FAT has been validated for numerous classification tasks including CIFAR10, GTSRB, SVHN and ImageNet.
arXiv Detail & Related papers (2020-11-11T16:09:39Z) - An Integrated Approach to Produce Robust Models with High Efficiency [9.476463361600828]
Quantization and structure simplification are promising ways to adapt Deep Neural Networks (DNNs) to mobile devices.
In this work, we try to obtain both features by applying a convergent relaxation quantization algorithm, Binary-Relax (BR), to a robust adversarial-trained model, ResNets Ensemble.
We design a trade-off loss function that helps DNNs preserve their natural accuracy and improve the channel sparsity.
arXiv Detail & Related papers (2020-08-31T00:44:59Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.