Ensemble Method for Cluster Number Determination and Algorithm Selection
in Unsupervised Learning
- URL: http://arxiv.org/abs/2112.13680v1
- Date: Thu, 23 Dec 2021 04:59:10 GMT
- Title: Ensemble Method for Cluster Number Determination and Algorithm Selection
in Unsupervised Learning
- Authors: Antoine Zambelli
- Abstract summary: Unsupervised learning suffers from the need for expertise in the field to be of use.
We propose an ensemble clustering framework which can be leveraged with minimal input.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised learning, and more specifically clustering, suffers from the
need for expertise in the field to be of use. Researchers must make careful and
informed decisions on which algorithm to use with which set of hyperparameters
for a given dataset. Additionally, researchers may need to determine the number
of clusters in the dataset, which is unfortunately itself an input to most
clustering algorithms. All of this before embarking on their actual subject
matter work. After quantifying the impact of algorithm and hyperparameter
selection, we propose an ensemble clustering framework which can be leveraged
with minimal input. It can be used to determine both the number of clusters in
the dataset and a suitable choice of algorithm to use for a given dataset. A
code library is included in the Conclusion for ease of integration.
Related papers
- From Large to Small Datasets: Size Generalization for Clustering
Algorithm Selection [12.993073967843292]
We study a problem in a semi-supervised setting, with an unknown ground-truth clustering.
We introduce a notion of size generalization for clustering algorithm accuracy.
We use a subsample of as little as 5% of the data to identify which algorithm is best on the full dataset.
arXiv Detail & Related papers (2024-02-22T06:53:35Z) - A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
Subset selection is a fundamental problem that can play a key role in identifying smaller portions of the training data.
We develop a novel factor 3-approximation algorithm to compute subsets based on the weighted sum of both k-center and uncertainty sampling objective functions.
arXiv Detail & Related papers (2023-12-17T04:41:07Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
Online deep clustering refers to the joint use of a feature extraction network and a clustering model to assign cluster labels to each new data point or batch as it is processed.
While faster and more versatile than offline methods, online clustering can easily reach the collapsed solution where the encoder maps all inputs to the same point and all are put into a single cluster.
We propose a method that does not require data augmentation, and that, differently from existing methods, regularizes the hard assignments.
arXiv Detail & Related papers (2023-03-29T08:23:26Z) - An Exact Algorithm for Semi-supervised Minimum Sum-of-Squares Clustering [0.5801044612920815]
We present a new branch-and-bound algorithm for semi-supervised MSSC.
Background knowledge is incorporated as pairwise must-link and cannot-link constraints.
For the first time, the proposed global optimization algorithm efficiently manages to solve real-world instances up to 800 data points.
arXiv Detail & Related papers (2021-11-30T17:08:53Z) - Robust Trimmed k-means [70.88503833248159]
We propose Robust Trimmed k-means (RTKM) that simultaneously identifies outliers and clusters points.
We show RTKM performs competitively with other methods on single membership data with outliers and multi-membership data without outliers.
arXiv Detail & Related papers (2021-08-16T15:49:40Z) - Algorithm Selection on a Meta Level [58.720142291102135]
We introduce the problem of meta algorithm selection, which essentially asks for the best way to combine a given set of algorithm selectors.
We present a general methodological framework for meta algorithm selection as well as several concrete learning methods as instantiations of this framework.
arXiv Detail & Related papers (2021-07-20T11:23:21Z) - The Three Ensemble Clustering (3EC) Algorithm for Pattern Discovery in
Unsupervised Learning [1.0465883970481493]
The 'Three Ensemble Clustering 3EC' algorithm classifies unlabeled data into quality clusters as a part of unsupervised learning.
Each partitioned cluster is considered to be a new data set and is a candidate to explore the most optimal algorithm.
The users can experiment with different sets of stopping criteria and choose the most'sensible group' of quality clusters.
arXiv Detail & Related papers (2021-07-08T10:15:18Z) - A review of systematic selection of clustering algorithms and their
evaluation [0.0]
This paper aims to identify a systematic selection logic for clustering algorithms and corresponding validation concepts.
The goal is to enable potential users to choose an algorithm that fits best to their needs and the properties of their underlying data clustering problem.
arXiv Detail & Related papers (2021-06-24T07:01:46Z) - Differentially Private Clustering: Tight Approximation Ratios [57.89473217052714]
We give efficient differentially private algorithms for basic clustering problems.
Our results imply an improved algorithm for the Sample and Aggregate privacy framework.
One of the tools used in our 1-Cluster algorithm can be employed to get a faster quantum algorithm for ClosestPair in a moderate number of dimensions.
arXiv Detail & Related papers (2020-08-18T16:22:06Z) - A semi-supervised sparse K-Means algorithm [3.04585143845864]
An unsupervised sparse clustering method can be employed in order to detect the subgroup of features necessary for clustering.
A semi-supervised method can use the labelled data to create constraints and enhance the clustering solution.
We show that the algorithm maintains the high performance of other semi-supervised algorithms and in addition preserves the ability to identify informative from uninformative features.
arXiv Detail & Related papers (2020-03-16T02:05:23Z) - Optimal Clustering from Noisy Binary Feedback [75.17453757892152]
We study the problem of clustering a set of items from binary user feedback.
We devise an algorithm with a minimal cluster recovery error rate.
For adaptive selection, we develop an algorithm inspired by the derivation of the information-theoretical error lower bounds.
arXiv Detail & Related papers (2019-10-14T09:18:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.