Algorithm Selection on a Meta Level
- URL: http://arxiv.org/abs/2107.09414v1
- Date: Tue, 20 Jul 2021 11:23:21 GMT
- Title: Algorithm Selection on a Meta Level
- Authors: Alexander Tornede, Lukas Gehring, Tanja Tornede, Marcel Wever, Eyke
H\"ullermeier
- Abstract summary: We introduce the problem of meta algorithm selection, which essentially asks for the best way to combine a given set of algorithm selectors.
We present a general methodological framework for meta algorithm selection as well as several concrete learning methods as instantiations of this framework.
- Score: 58.720142291102135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of selecting an algorithm that appears most suitable for a
specific instance of an algorithmic problem class, such as the Boolean
satisfiability problem, is called instance-specific algorithm selection. Over
the past decade, the problem has received considerable attention, resulting in
a number of different methods for algorithm selection. Although most of these
methods are based on machine learning, surprisingly little work has been done
on meta learning, that is, on taking advantage of the complementarity of
existing algorithm selection methods in order to combine them into a single
superior algorithm selector. In this paper, we introduce the problem of meta
algorithm selection, which essentially asks for the best way to combine a given
set of algorithm selectors. We present a general methodological framework for
meta algorithm selection as well as several concrete learning methods as
instantiations of this framework, essentially combining ideas of meta learning
and ensemble learning. In an extensive experimental evaluation, we demonstrate
that ensembles of algorithm selectors can significantly outperform single
algorithm selectors and have the potential to form the new state of the art in
algorithm selection.
Related papers
- A Survey of Meta-features Used for Automated Selection of Algorithms for Black-box Single-objective Continuous Optimization [4.173197621837912]
We conduct an overview of the key contributions to algorithm selection in the field of single-objective continuous black-box optimization.
We study machine learning models for automated algorithm selection, configuration, and performance prediction.
arXiv Detail & Related papers (2024-06-08T11:11:14Z) - Large Language Model-Enhanced Algorithm Selection: Towards Comprehensive Algorithm Representation [27.378185644892984]
This paper introduces Large Language Models (LLMs) into algorithm selection for the first time.
LLMs not only captures the structural and semantic aspects of the algorithm, but also demonstrates contextual awareness and library function understanding.
The selected algorithm is determined by the matching degree between a given problem and different algorithms.
arXiv Detail & Related papers (2023-11-22T06:23:18Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - Leveraging Benchmarking Data for Informed One-Shot Dynamic Algorithm
Selection [0.9281671380673306]
A key challenge in the application of evolutionary algorithms is the selection of an algorithm instance that best suits the problem at hand.
We analyze in this work how such prior performance data can be used to infer informed dynamic algorithm selection schemes for the solution of pseudo-Boolean optimization problems.
arXiv Detail & Related papers (2021-02-12T12:27:02Z) - Generalization in portfolio-based algorithm selection [97.74604695303285]
We provide the first provable guarantees for portfolio-based algorithm selection.
We show that if the portfolio is large, overfitting is inevitable, even with an extremely simple algorithm selector.
arXiv Detail & Related papers (2020-12-24T16:33:17Z) - Towards Meta-Algorithm Selection [78.13985819417974]
Instance-specific algorithm selection (AS) deals with the automatic selection of an algorithm from a fixed set of candidates.
We show that meta-algorithm-selection can indeed prove beneficial in some cases.
arXiv Detail & Related papers (2020-11-17T17:27:33Z) - Run2Survive: A Decision-theoretic Approach to Algorithm Selection based
on Survival Analysis [75.64261155172856]
survival analysis (SA) naturally supports censored data and offers appropriate ways to use such data for learning distributional models of algorithm runtime.
We leverage such models as a basis of a sophisticated decision-theoretic approach to algorithm selection, which we dub Run2Survive.
In an extensive experimental study with the standard benchmark ASlib, our approach is shown to be highly competitive and in many cases even superior to state-of-the-art AS approaches.
arXiv Detail & Related papers (2020-07-06T15:20:17Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.