論文の概要: Resource-Efficient and Delay-Aware Federated Learning Design under Edge
Heterogeneity
- arxiv url: http://arxiv.org/abs/2112.13926v1
- Date: Mon, 27 Dec 2021 22:30:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-30 16:06:23.274981
- Title: Resource-Efficient and Delay-Aware Federated Learning Design under Edge
Heterogeneity
- Title(参考訳): エッジの不均質性を考慮した資源効率と遅延対応型フェデレーション学習設計
- Authors: David Nickel and Frank Po-Chen Lin and Seyyedali Hosseinalipour and
Nicolo Michelusi and Christopher G. Brinton
- Abstract要約: フェデレーテッド・ラーニング(FL)は、ワイヤレスエッジデバイスに機械学習を分散するための一般的な方法論として登場した。
本研究では,FLにおけるモデル性能と資源利用のトレードオフを最適化することを検討する。
提案したStoFedDelAvは、FL計算ステップに局所言語モデルコンバインダーを組み込む。
- 参考スコア(独自算出の注目度): 10.702853653891902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) has emerged as a popular methodology for distributing
machine learning across wireless edge devices. In this work, we consider
optimizing the tradeoff between model performance and resource utilization in
FL, under device-server communication delays and device computation
heterogeneity. Our proposed StoFedDelAv algorithm incorporates a local-global
model combiner into the FL synchronization step. We theoretically characterize
the convergence behavior of StoFedDelAv and obtain the optimal combiner
weights, which consider the global model delay and expected local gradient
error at each device. We then formulate a network-aware optimization problem
which tunes the minibatch sizes of the devices to jointly minimize energy
consumption and machine learning training loss, and solve the non-convex
problem through a series of convex approximations. Our simulations reveal that
StoFedDelAv outperforms the current art in FL in terms of model convergence
speed and network resource utilization when the minibatch size and the combiner
weights are adjusted. Additionally, our method can reduce the number of uplink
communication rounds required during the model training period to reach the
same accuracy.
- Abstract(参考訳): フェデレーテッド・ラーニング(FL)は、ワイヤレスエッジデバイスに機械学習を分散するための一般的な方法論として登場した。
本稿では,デバイスサーバ間通信遅延とデバイス計算の不均一性を考慮した,flにおけるモデル性能とリソース利用のトレードオフの最適化について検討する。
提案するstofeddelavアルゴリズムは,局所大域モデル結合器をfl同期ステップに組み込む。
理論上,stofeddelavの収束挙動を特徴付け,各装置における大域モデル遅延と予測局所勾配誤差を考慮した最適結合重みを求める。
次に,各機器のミニバッチサイズを調整し,エネルギー消費と機械学習トレーニング損失を最小化し,一連の凸近似を用いて非凸問題を解くネットワーク対応最適化問題を定式化する。
シミュレーションの結果,stofeddelavは,ミニバッチサイズとコンバインタ重みを調整した場合のモデル収束速度とネットワーク資源利用率で,flの現在の技術を上回ることがわかった。
さらに,本手法は,モデルトレーニング期間中に必要となるアップリンク通信ラウンド数を削減し,同じ精度を実現する。
関連論文リスト
- Over-the-Air Federated Learning and Optimization [52.5188988624998]
エッジ・ザ・エア計算(AirComp)によるフェデレーション学習(FL)に焦点を当てる。
本稿では,AirComp ベースの FedAvg (AirFedAvg) アルゴリズムの凸および非凸条件下での収束について述べる。
エッジデバイス(モデル、勾配、モデル差など)で送信できるローカルアップデートの種類によって、AirFedAvgで送信するとアグリゲーションエラーが発生する可能性がある。
さらに、より実用的な信号処理方式を検討し、通信効率を改善し、これらの信号処理方式によって引き起こされるモデル集約誤差の異なる形式に収束解析を拡張する。
論文 参考訳(メタデータ) (2023-10-16T05:49:28Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
フェデレーション学習(FL)は、データプライバシを保護しながら、エッジデバイス間での分散学習を可能にする。
これらの課題を克服するために、部分的なモデルプルーニングとパーソナライズを備えたFLフレームワークを検討する。
このフレームワークは、学習モデルを、データ表現を学ぶためにすべてのデバイスと共有されるモデルプルーニングと、特定のデバイスのために微調整されるパーソナライズされた部分とで、グローバルな部分に分割する。
論文 参考訳(メタデータ) (2023-09-04T21:10:45Z) - Channel and Gradient-Importance Aware Device Scheduling for Over-the-Air
Federated Learning [31.966999085992505]
フェデレートラーニング(Federated Learning、FL)は、プライバシ保護のための分散トレーニングスキームである。
チャネルノイズ歪みの負の影響を緩和するために,PO-FL というオーバー・ザ・エア FL のための機器スケジューリングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-26T12:04:59Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
高速かつ正確なモデルアグリゲーションを実現するために,クラウド無線アクセスネットワーク(Cloud-RAN)ベースの垂直FLシステムを提案する。
アップリンクとダウンリンクの両方の伝送を考慮した垂直FLアルゴリズムの収束挙動を特徴付ける。
我々は,連続凸近似と代替凸探索に基づくシステム最適化アルゴリズムを開発した,連系トランシーバとフロントホール量子化設計によるシステム最適化フレームワークを構築した。
論文 参考訳(メタデータ) (2023-05-04T09:26:03Z) - Delay-Aware Hierarchical Federated Learning [7.292078085289465]
本稿では,分散機械学習(ML)モデルの学習効率を向上させるために,遅延認識型階層型学習(DFL)を提案する。
グローバル同期の間、クラウドサーバは、凸制御アルゴリズムを使用して、ローカルモデルを時代遅れのグローバルモデルと統合する。
数値評価により、DFLの高速グローバルモデル、収束資源の削減、通信遅延に対する評価において優れた性能を示す。
論文 参考訳(メタデータ) (2023-03-22T09:23:29Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
本稿では,モデル量子化による統合学習(FL)における無線通信と計算効率の向上について考察する。
提案したビット幅FL方式では,エッジデバイスは局所FLモデルパラメータの量子化バージョンを調整し,コーディネートサーバに送信し,それらを量子化されたグローバルモデルに集約し,デバイスを同期させる。
FLトレーニングプロセスはマルコフ決定プロセスとして記述でき、反復よりも行動選択を最適化するためのモデルベース強化学習(RL)手法を提案する。
論文 参考訳(メタデータ) (2022-09-21T08:52:51Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
無線ネットワークにおけるハイブリッド・フェデレーション・スプリット・ラーニング・フレームワークを提案する。
ラベル共有のないモデル分割のための並列計算方式を設計し,提案方式が収束速度に与える影響を理論的に解析する。
論文 参考訳(メタデータ) (2022-09-02T10:29:56Z) - Stragglers Are Not Disaster: A Hybrid Federated Learning Algorithm with
Delayed Gradients [21.63719641718363]
フェデレーション・ラーニング(federated learning, fl)は、多数の分散コンピューティングデバイスで合同モデルをトレーニングする、新しい機械学習フレームワークである。
本稿では,効率と有効性における学習バランスを実現するための新しいflアルゴリズムであるhybrid federated learning(hfl)を提案する。
論文 参考訳(メタデータ) (2021-02-12T02:27:44Z) - Delay Minimization for Federated Learning Over Wireless Communication
Networks [172.42768672943365]
無線通信ネットワーク上でのフェデレーション学習(FL)における遅延計算の問題について検討した。
最適解を得るために,二項探索アルゴリズムを提案する。
シミュレーションの結果,提案アルゴリズムは従来のFL法と比較して最大27.3%遅延を低減できることがわかった。
論文 参考訳(メタデータ) (2020-07-05T19:00:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。