Resource-Efficient and Delay-Aware Federated Learning Design under Edge
Heterogeneity
- URL: http://arxiv.org/abs/2112.13926v1
- Date: Mon, 27 Dec 2021 22:30:15 GMT
- Title: Resource-Efficient and Delay-Aware Federated Learning Design under Edge
Heterogeneity
- Authors: David Nickel and Frank Po-Chen Lin and Seyyedali Hosseinalipour and
Nicolo Michelusi and Christopher G. Brinton
- Abstract summary: Federated learning (FL) has emerged as a popular methodology for distributing machine learning across wireless edge devices.
In this work, we consider optimizing the tradeoff between model performance and resource utilization in FL.
Our proposed StoFedDelAv incorporates a localglobal model combiner into the FL computation step.
- Score: 10.702853653891902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) has emerged as a popular methodology for distributing
machine learning across wireless edge devices. In this work, we consider
optimizing the tradeoff between model performance and resource utilization in
FL, under device-server communication delays and device computation
heterogeneity. Our proposed StoFedDelAv algorithm incorporates a local-global
model combiner into the FL synchronization step. We theoretically characterize
the convergence behavior of StoFedDelAv and obtain the optimal combiner
weights, which consider the global model delay and expected local gradient
error at each device. We then formulate a network-aware optimization problem
which tunes the minibatch sizes of the devices to jointly minimize energy
consumption and machine learning training loss, and solve the non-convex
problem through a series of convex approximations. Our simulations reveal that
StoFedDelAv outperforms the current art in FL in terms of model convergence
speed and network resource utilization when the minibatch size and the combiner
weights are adjusted. Additionally, our method can reduce the number of uplink
communication rounds required during the model training period to reach the
same accuracy.
Related papers
- Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Channel and Gradient-Importance Aware Device Scheduling for Over-the-Air
Federated Learning [31.966999085992505]
Federated learning (FL) is a privacy-preserving distributed training scheme.
We propose a device scheduling framework for over-the-air FL, named PO-FL, to mitigate the negative impact of channel noise distortion.
arXiv Detail & Related papers (2023-05-26T12:04:59Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
We propose a novel cloud radio access network (Cloud-RAN) based vertical FL system to enable fast and accurate model aggregation.
We characterize the convergence behavior of the vertical FL algorithm considering both uplink and downlink transmissions.
We establish a system optimization framework by joint transceiver and fronthaul quantization design, for which successive convex approximation and alternate convex search based system optimization algorithms are developed.
arXiv Detail & Related papers (2023-05-04T09:26:03Z) - Delay-Aware Hierarchical Federated Learning [7.292078085289465]
The paper introduces delay-aware hierarchical federated learning (DFL) to improve the efficiency of distributed machine learning (ML) model training.
During global synchronization, the cloud server consolidates local models with an outdated global model using a convex control algorithm.
Numerical evaluations show DFL's superior performance in terms of faster global model, reduced convergence resource, and evaluations against communication delays.
arXiv Detail & Related papers (2023-03-22T09:23:29Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
This paper considers improving wireless communication and computation efficiency in federated learning (FL) via model quantization.
In the proposed bitwidth FL scheme, edge devices train and transmit quantized versions of their local FL model parameters to a coordinating server, which aggregates them into a quantized global model and synchronizes the devices.
We show that the FL training process can be described as a Markov decision process and propose a model-based reinforcement learning (RL) method to optimize action selection over iterations.
arXiv Detail & Related papers (2022-09-21T08:52:51Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
We propose a hybrid federated split learning framework in wireless networks.
We design a parallel computing scheme for model splitting without label sharing, and theoretically analyze the influence of the delayed gradient caused by the scheme on the convergence speed.
arXiv Detail & Related papers (2022-09-02T10:29:56Z) - Stragglers Are Not Disaster: A Hybrid Federated Learning Algorithm with
Delayed Gradients [21.63719641718363]
Federated learning (FL) is a new machine learning framework which trains a joint model across a large amount of decentralized computing devices.
This paper presents a novel FL algorithm, namely Hybrid Federated Learning (HFL), to achieve a learning balance in efficiency and effectiveness.
arXiv Detail & Related papers (2021-02-12T02:27:44Z) - Delay Minimization for Federated Learning Over Wireless Communication
Networks [172.42768672943365]
The problem of delay computation for federated learning (FL) over wireless communication networks is investigated.
A bisection search algorithm is proposed to obtain the optimal solution.
Simulation results show that the proposed algorithm can reduce delay by up to 27.3% compared to conventional FL methods.
arXiv Detail & Related papers (2020-07-05T19:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.