Controversy of quantum congestion in two-particle quantum walks
- URL: http://arxiv.org/abs/2112.13947v1
- Date: Tue, 28 Dec 2021 00:19:17 GMT
- Title: Controversy of quantum congestion in two-particle quantum walks
- Authors: A.D. Lobanova, A.D. Lobanov, A.M. Pupasov-Maksimov
- Abstract summary: The article deals with one- and two-particle quantum walks on a graph with Braess-like topology and analyzes the issue of network congestion in the quantum world.
Our approach to the study of congestion in quantum networks is based on the comparison of the evolution of bosonic and fermionic many-particle states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The article deals with one- and two-particle quantum walks on a graph with
Braess-like topology and analyzes the issue of network congestion in the
quantum world. Our approach to the study of congestion in quantum networks is
based on the comparison of the evolution of bosonic and fermionic many-particle
states. We consider a simple example of non-interacting particles, where one
can expect the appearance of congestion in the fermion case due to the Pauli
principle. It is shown that dependence of the transport efficiency on the
parameters of quantum graph is similar in the bosonic and fermionic cases.
Related papers
- Realizing Topological Quantum Walks on NISQ Digital Quantum Computer [0.0]
We study the quantum walk on the off-diagonal Aubry-Andr'e-Harper lattice with periodic modulation using a digital quantum computer.
Initiating the quantum walk with a particle at the lattice edge reveals the robustness of the edge state, attributed to the topological nature of the AAH model.
We extend our investigation to the quantum walk of two particles with nearest-neighbour (NN) interaction.
arXiv Detail & Related papers (2024-02-28T20:05:14Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Quantum teleportation and dynamics of quantum coherence and metrological
non-classical correlations for open two-qubit systems: A study of Markovian
and non-Markovian regimes [0.0]
We study the dynamics of non-classical correlations and quantum coherence in open quantum systems.
Our focus is on a system of two qubits in two distinct physical situations.
We establish a quantum teleportation strategy based on the two different physical scenarios.
arXiv Detail & Related papers (2023-09-05T11:41:04Z) - Normal quantum channels and Markovian correlated two-qubit quantum
errors [77.34726150561087]
We study general normally'' distributed random unitary transformations.
On the one hand, a normal distribution induces a unital quantum channel.
On the other hand, the diffusive random walk defines a unital quantum process.
arXiv Detail & Related papers (2023-07-25T15:33:28Z) - Lee-Yang theory of quantum phase transitions with neural network quantum
states [0.0]
We show that neural network quantum states can be combined with a Lee-Yang theory of quantum phase transitions to predict the critical points of strongly-correlated spin lattices.
Our results provide a starting point for determining the phase diagram of more complex quantum many-body systems.
arXiv Detail & Related papers (2023-01-24T11:10:37Z) - Quantum Annealing: An Overview [0.3779860024918729]
We present an overview of some recent theoretical as well as experimental developments pointing to the issues which are still debated.
We discuss the Kibble-Zurek scaling of defect generation following a ramping of a quantum many body system across a quantum critical point.
arXiv Detail & Related papers (2022-07-05T06:02:12Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
We experimentally realize a controllable inhomogenous Quantum Walk dynamics.
We observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network.
arXiv Detail & Related papers (2021-02-09T10:57:00Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z) - Non-interacting many-particle quantum transport between finite
reservoirs [5.570257942336495]
We study many-particle quantum transport across a lattice locally connected to two finite, non-stationary (bosonic or fermionic) reservoirs.
We analytically derive the time scale of this equilibration process, and, furthermore, investigate the imprint of many-particle interferences on the transport process.
arXiv Detail & Related papers (2020-02-05T16:02:01Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.