Amplification of quantum transfer and quantum ratchet
- URL: http://arxiv.org/abs/2401.00508v1
- Date: Sun, 31 Dec 2023 14:04:43 GMT
- Title: Amplification of quantum transfer and quantum ratchet
- Authors: Sergei Kozyrev, Alexander Pechen
- Abstract summary: We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
- Score: 56.47577824219207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Amplification of quantum transfer and ratchet--type processes are important
for quantum technologies. We also expect that quantum ratchet works in quantum
photosynthesis, where possible role of quantum effects is now widely discussed
but the underlying dynamical processes are still not clearly known. In this
work, we study a model of amplification of quantum transfer and making it
directed which we call the quantum ratchet model. The model is based on a
special quantum control master equation with dynamics induced by a
feedback-type process. The ratchet effect is achieved in the quantum control
model with dissipation and sink, where the Hamiltonian depends on vibrations in
the energy difference synchronized with transitions between energy levels. A
similarity between this model and the model of coherent transport in quantum
photosynthesis, where the time dependence of the Hamiltonian arises due to
vibrons, is studied. Amplitude and frequency of the oscillating vibron together
with the dephasing rate are the parameters of the quantum ratchet which
determine its efficiency. We study with which parameters the quantum ratchet
minimizes the exction recombination time and show that the experimentally known
values of the parameters of the photosynthetic reaction center correspond to
values of the parameters of the quantum ratchet which realize a local minimum
of the exciton recombination time. We also find another values of the
parameters of the quantum ratchet minimizing the exciton recombination time,
which corresponds to a twice smaller frequency of the vibron compared to that
observed in experiments.
Related papers
- Attractive-repulsive interaction in coupled quantum oscillators [14.37149160708975]
We find an interesting symmetry-breaking transition from quantum limit cycle oscillation to quantum inhomogeneous steady state.
This transition is contrary to the previously known symmetry-breaking transition from quantum homogeneous to inhomogeneous steady state.
Remarkably, we find the generation of entanglement associated with the symmetry-breaking transition that has no analogue in the classical domain.
arXiv Detail & Related papers (2024-08-23T10:45:19Z) - A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Quadratic growth of Out-of-time ordered correlators in quantum kicked
rotor model [0.0]
We study the dynamics of Out-of-Time-Ordered Correlators (OTOCs) in quantum resonance condition for a kicked rotor model.
We find that the OTOCs of different types increase in a quadratic function of time, breaking the freezing of quantum scrambling induced by the dynamical localization under non-resonance condition.
arXiv Detail & Related papers (2024-01-19T23:17:31Z) - Persisting quantum effects in the anisotropic Rabi model at thermal
equilibrium [0.0]
We study the long-lived quantum correlations and nonclassical states generated in the anisotropic Rabi model.
We demonstrate a stark distinction between virtual excitations produced beyond the strong coupling regime and the quantumness quantifiers once the light-matter interaction has been switched off.
arXiv Detail & Related papers (2023-09-05T10:59:32Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Sampling, rates, and reaction currents through reverse stochastic
quantization on quantum computers [0.0]
We show how to tackle the problem using a suitably quantum computer.
We propose a hybrid quantum-classical sampling scheme to escape local minima.
arXiv Detail & Related papers (2021-08-25T18:04:52Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.