論文の概要: Towards Relatable Explainable AI with the Perceptual Process
- arxiv url: http://arxiv.org/abs/2112.14005v1
- Date: Tue, 28 Dec 2021 05:48:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-31 04:44:42.205852
- Title: Towards Relatable Explainable AI with the Perceptual Process
- Title(参考訳): 知覚プロセスで説明可能なaiの実現に向けて
- Authors: Wencan Zhang, Brian Y. Lim
- Abstract要約: 我々は、説明は、他の概念、仮説、および関連性により関連していなければならないと論じる。
認知心理学に触発されて、相対論的説明可能なAIのためのXAI知覚処理フレームワークとRexNetモデルを提案する。
- 参考スコア(独自算出の注目度): 5.581885362337179
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning models need to provide contrastive explanations, since
people often seek to understand why a puzzling prediction occurred instead of
some expected outcome. Current contrastive explanations are rudimentary
comparisons between examples or raw features, which remain difficult to
interpret, since they lack semantic meaning. We argue that explanations must be
more relatable to other concepts, hypotheticals, and associations. Inspired by
the perceptual process from cognitive psychology, we propose the XAI Perceptual
Processing Framework and RexNet model for relatable explainable AI with
Contrastive Saliency, Counterfactual Synthetic, and Contrastive Cues
explanations. We investigated the application of vocal emotion recognition, and
implemented a modular multi-task deep neural network to predict and explain
emotions from speech. From think-aloud and controlled studies, we found that
counterfactual explanations were useful and further enhanced with semantic
cues, but not saliency explanations. This work provides insights into providing
and evaluating relatable contrastive explainable AI for perception
applications.
- Abstract(参考訳): 機械学習モデルは、予想される結果ではなく、なぜ混乱する予測が起こったのかを理解するために、対照的な説明を提供する必要がある。
現在の対照的な説明は、例と生の特徴の基本的な比較であり、意味的な意味が欠けているため、解釈が難しい。
我々は、説明は、他の概念、仮説、および関連性により関連していなければならないと論じる。
認知心理学から知覚過程に着想を得て,コントラッシブ・サリエンシ,対実合成,コントラシブ・キュースによる説明可能なAIのためのXAI知覚処理フレームワークとRexNetモデルを提案する。
音声感情認識の応用について検討し,モジュール型多タスク深層ニューラルネットワークを実装し,音声からの感情の予測と説明を行った。
思考・制御研究から, 反事実的説明は有益であり, 意味的手がかりでさらに強化された。
この研究は、知覚アプリケーションのための可溶性コントラスト説明可能なaiの提供と評価に関する洞察を提供する。
関連論文リスト
- May I Ask a Follow-up Question? Understanding the Benefits of Conversations in Neural Network Explainability [17.052366688978935]
自由形式の会話が静的な説明の理解を深めるかどうかを検討する。
参加者が3つの機械学習モデルから選択できる能力に会話が与える影響を計測する。
本研究は,自由形式の会話形式におけるモデル説明のカスタマイズの重要性を強調した。
論文 参考訳(メタデータ) (2023-09-25T09:00:38Z) - Exploring Effectiveness of Explanations for Appropriate Trust: Lessons
from Cognitive Psychology [3.1945067016153423]
この研究は、認知心理学における発見からインスピレーションを得て、いかに効果的な説明を設計できるかを理解する。
我々は、デザイナーが特別な注意を払うことができる4つのコンポーネント、知覚、意味論、意図、ユーザとコンテキストを識別する。
本稿では,解釈可能な説明を生成できないアルゴリズムと説明コミュニケーションを併用した説明生成の新たなステップとして,効果的なAI説明のための重要な課題を提案する。
論文 参考訳(メタデータ) (2022-10-05T13:40:01Z) - Human Interpretation of Saliency-based Explanation Over Text [65.29015910991261]
テキストデータ上でのサリエンシに基づく説明について検討する。
人はしばしば説明を誤って解釈する。
本稿では,過度知覚と過小認識のモデル推定に基づいて,サリエンシを調整する手法を提案する。
論文 参考訳(メタデータ) (2022-01-27T15:20:32Z) - Diagnosing AI Explanation Methods with Folk Concepts of Behavior [70.10183435379162]
我々は「成功」は、その説明がどんな情報を含むかだけでなく、人間の説明者がどのような情報から理解するかにも依存すると考えている。
我々は、人間の説明による社会的帰属の枠組みとして、行動の民意的概念を用いる。
論文 参考訳(メタデータ) (2022-01-27T00:19:41Z) - CX-ToM: Counterfactual Explanations with Theory-of-Mind for Enhancing
Human Trust in Image Recognition Models [84.32751938563426]
我々は、深層畳み込みニューラルネットワーク(CNN)による決定を説明するための、新しい説明可能なAI(XAI)フレームワークを提案する。
単発応答として説明を生成するXAIの現在の手法とは対照的に,我々は反復的な通信プロセスとして説明を行う。
本フレームワークは,機械の心と人間の心の相違を媒介し,対話における説明文のシーケンスを生成する。
論文 参考訳(メタデータ) (2021-09-03T09:46:20Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
私たちは、2つの異なるグループ、つまりAIのバックグラウンドを持つ人々といない人たちの、異なるタイプのAI説明に対する理解について、混合手法による研究を行います。
その結果,(1) 両群は異なる理由から不合理な数に対する信頼を示し,(2) それぞれの群は意図した設計以上の異なる説明に価値を見出した。
論文 参考訳(メタデータ) (2021-07-28T17:32:04Z) - Expressive Explanations of DNNs by Combining Concept Analysis with ILP [0.3867363075280543]
我々は,dnn(feed-forward convolutional deep neural network)の理論的根拠をグローバル,表現的,言語的に説明するために,ネットワークが学習した本質的特徴を用いた。
我々の説明は元々のブラックボックスモデルに忠実であることを示している。
論文 参考訳(メタデータ) (2021-05-16T07:00:27Z) - Semantics and explanation: why counterfactual explanations produce
adversarial examples in deep neural networks [15.102346715690759]
説明可能なAIに関する最近の論文は、対実的な説明のモードを説得力あるものにしている。
反事実的説明はいくつかのケースでは極めて効果的であるように見えるが、正式には敵の例と等価である。
この2つの手順が公式に同値であるならば、反事実的な説明と敵対的な例の間に明らかな説明分割にはどのような意味があるのでしょうか?
このパラドックスは、反事実表現の意味論に重きを置くことで解決する。
論文 参考訳(メタデータ) (2020-12-18T07:04:04Z) - Explainable AI without Interpretable Model [0.0]
AIシステムが、結果の背後にある理由をエンドユーザに説明できることは、これまで以上に重要になっています。
ほとんどの説明可能なAI(XAI)メソッドは、説明を作成するのに使用できる解釈可能なモデルを抽出することに基づいている。
本論文では,文脈的重要性と実用性(CIU)の概念により,ブラックボックスの結果の人間的な説明を直接生成することが可能となる。
論文 参考訳(メタデータ) (2020-09-29T13:29:44Z) - Compositional Explanations of Neurons [52.71742655312625]
本稿では, 合成論理的概念を同定し, 深部表現におけるニューロンの説明手順について述べる。
本稿では,視覚と自然言語処理のモデルにおける解釈可能性に関するいくつかの疑問に答えるために,この手順を用いる。
論文 参考訳(メタデータ) (2020-06-24T20:37:05Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。