A full circuit-based quantum algorithm for excited-states in quantum
chemistry
- URL: http://arxiv.org/abs/2112.14193v3
- Date: Wed, 3 Jan 2024 06:31:58 GMT
- Title: A full circuit-based quantum algorithm for excited-states in quantum
chemistry
- Authors: Jingwei Wen, Zhengan Wang, Chitong Chen, Junxiang Xiao, Hang Li, Ling
Qian, Zhiguo Huang, Heng Fan, Shijie Wei, and Guilu Long
- Abstract summary: We propose a non-variational full circuit-based quantum algorithm for obtaining the excited-state spectrum of a quantum chemistry Hamiltonian.
Compared with previous classical-quantum hybrid variational algorithms, our method eliminates the classical optimization process.
The algorithm can be widely applied to various Hamiltonian spectrum determination problems on the fault-tolerant quantum computers.
- Score: 6.973166066636441
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Utilizing quantum computer to investigate quantum chemistry is an important
research field nowadays. In addition to the ground-state problems that have
been widely studied, the determination of excited-states plays a crucial role
in the prediction and modeling of chemical reactions and other physical
processes. Here, we propose a non-variational full circuit-based quantum
algorithm for obtaining the excited-state spectrum of a quantum chemistry
Hamiltonian. Compared with previous classical-quantum hybrid variational
algorithms, our method eliminates the classical optimization process, reduces
the resource cost caused by the interaction between different systems, and
achieves faster convergence rate and stronger robustness against noise without
barren plateau. The parameter updating for determining the next energy-level is
naturally dependent on the energy measurement outputs of the previous
energy-level and can be realized by only modifying the state preparation
process of ancillary system, introducing little additional resource overhead.
Numerical simulations of the algorithm with hydrogen, LiH, H2O and NH3
molecules are presented. Furthermore, we offer an experimental demonstration of
the algorithm on a superconducting quantum computing platform, and the results
show a good agreement with theoretical expectations. The algorithm can be
widely applied to various Hamiltonian spectrum determination problems on the
fault-tolerant quantum computers.
Related papers
- Understanding and mitigating noise in molecular quantum linear response for spectroscopic properties on quantum computers [0.0]
We present a study of quantum linear response theory obtaining spectroscopic properties on simulated fault-tolerant quantum computers.
This work introduces novel metrics to analyze and predict the origins of noise in the quantum algorithm.
We highlight the significant impact of Pauli saving in reducing measurement costs and noise.
arXiv Detail & Related papers (2024-08-17T23:46:17Z) - Evaluation of phase shifts for non-relativistic elastic scattering using quantum computers [39.58317527488534]
This work reports the development of an algorithm that makes it possible to obtain phase shifts for generic non-relativistic elastic scattering processes on a quantum computer.
arXiv Detail & Related papers (2024-07-04T21:11:05Z) - Hybrid Quantum-Classical Clustering for Preparing a Prior Distribution of Eigenspectrum [10.950807972899575]
We consider preparing the prior distribution and circuits for the eigenspectrum of time-independent Hamiltonians.
The proposed algorithm unfolds in three strategic steps: Hamiltonian transformation, parameter representation, and classical clustering.
The algorithm is showcased through applications to the 1D Heisenberg system and the LiH molecular system.
arXiv Detail & Related papers (2024-06-29T14:21:55Z) - Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
We call this protocol bias-field digitizeddiabatic quantum optimization (BF-DCQO)
Our purely quantum approach eliminates the dependency on classical variational quantum algorithms.
It achieves scaling improvements in ground state success probabilities, increasing by up to two orders of magnitude.
arXiv Detail & Related papers (2024-05-22T18:11:42Z) - Probing Quantum Efficiency: Exploring System Hardness in Electronic
Ground State Energy Estimation [0.0]
We consider the question of how correlated the system hardness is between classical algorithms of electronic structure theory and quantum algorithms.
For quantum algorithms, we have selected the Variational Quantum Eigensolver (VQE) and Quantum Phase Estimation (QPE) methods.
arXiv Detail & Related papers (2023-10-31T20:07:15Z) - Fighting noise with noise: a stochastic projective quantum eigensolver [0.0]
We present a novel approach to estimating physical observables which leads to a two order of magnitude reduction in the required sampling of the quantum state.
The method can be applied to excited-state calculations and simulation for general chemistry on quantum devices.
arXiv Detail & Related papers (2023-06-26T09:22:06Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.