Probing Quantum Efficiency: Exploring System Hardness in Electronic
Ground State Energy Estimation
- URL: http://arxiv.org/abs/2311.00129v1
- Date: Tue, 31 Oct 2023 20:07:15 GMT
- Title: Probing Quantum Efficiency: Exploring System Hardness in Electronic
Ground State Energy Estimation
- Authors: Seonghoon Choi and Ignacio Loaiza and Robert A. Lang and Luis A.
Mart\'inez-Mart\'inez and Artur F. Izmaylov
- Abstract summary: We consider the question of how correlated the system hardness is between classical algorithms of electronic structure theory and quantum algorithms.
For quantum algorithms, we have selected the Variational Quantum Eigensolver (VQE) and Quantum Phase Estimation (QPE) methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the question of how correlated the system hardness is between
classical algorithms of electronic structure theory in ground state estimation
and quantum algorithms. To define the system hardness for classical algorithms
we employ empirical criterion based on the deviation of electronic energies
produced by coupled cluster and configuration interaction methods from the
exact ones along multiple bonds dissociation in a set of molecular systems. For
quantum algorithms, we have selected the Variational Quantum Eigensolver (VQE)
and Quantum Phase Estimation (QPE) methods. As characteristics of the system
hardness for quantum methods, we analyzed circuit depths for the state
preparation, the number of quantum measurements needed for the energy
expectation value, and various cost characteristics for the Hamiltonian
encodings via Trotter approximation and linear combination of unitaries (LCU).
Our results show that the quantum resource requirements are mostly unaffected
by classical hardness, with the only exception being the state preparation
part, which contributes to both VQE and QPE algorithm costs. However, there are
clear indications that constructing the initial state with a significant
overlap with the true ground state (>10%) is easier than obtaining the state
with an energy expectation value within chemical precision. These results
support optimism regarding the identification of a molecular system where a
quantum algorithm excels over its classical counterpart, as quantum methods can
maintain efficiency in classically challenging systems.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Shortcut to Chemically Accurate Quantum Computing via Density-based Basis-set Correction [0.4909687476363595]
We embed a quantum computing ansatz into density-functional theory via density-based basis-set corrections (DBBSC)
We provide a shortcut towards chemically accurate quantum computations by approaching the complete-basis-set limit.
The resulting approach self-consistently accelerates the basis-set convergence, improving electronic densities, ground-state energies, and first-order properties.
arXiv Detail & Related papers (2024-05-19T14:31:01Z) - Sparse Quantum State Preparation for Strongly Correlated Systems [0.0]
In principle, the encoding of the exponentially scaling many-electron wave function onto a linearly scaling qubit register offers a promising solution to overcome the limitations of traditional quantum chemistry methods.
An essential requirement for ground state quantum algorithms to be practical is the initialisation of the qubits to a high-quality approximation of the sought-after ground state.
Quantum State Preparation (QSP) allows the preparation of approximate eigenstates obtained from classical calculations, but it is frequently treated as an oracle in quantum information.
arXiv Detail & Related papers (2023-11-06T18:53:50Z) - Electronic Structure Calculations using Quantum Computing [0.0]
We present a hybrid Classical-Quantum computational procedure that uses the Variational Quantum Eigensolver (VQE) algorithm.
Our algorithm offers a streamlined process requiring fewer computational resources than classical methods.
Results indicate the potential of the algorithm to expedite the development of new materials and technologies.
arXiv Detail & Related papers (2023-05-13T12:02:05Z) - Quantum Davidson Algorithm for Excited States [42.666709382892265]
We introduce the quantum Krylov subspace (QKS) method to address both ground and excited states.
By using the residues of eigenstates to expand the Krylov subspace, we formulate a compact subspace that aligns closely with the exact solutions.
Using quantum simulators, we employ the novel QDavidson algorithm to delve into the excited state properties of various systems.
arXiv Detail & Related papers (2022-04-22T15:03:03Z) - A full circuit-based quantum algorithm for excited-states in quantum
chemistry [6.973166066636441]
We propose a non-variational full circuit-based quantum algorithm for obtaining the excited-state spectrum of a quantum chemistry Hamiltonian.
Compared with previous classical-quantum hybrid variational algorithms, our method eliminates the classical optimization process.
The algorithm can be widely applied to various Hamiltonian spectrum determination problems on the fault-tolerant quantum computers.
arXiv Detail & Related papers (2021-12-28T15:48:09Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.