Efficient Methods for Non-stationary Online Learning
- URL: http://arxiv.org/abs/2309.08911v1
- Date: Sat, 16 Sep 2023 07:30:12 GMT
- Title: Efficient Methods for Non-stationary Online Learning
- Authors: Peng Zhao and Yan-Feng Xie and Lijun Zhang and Zhi-Hua Zhou
- Abstract summary: We present efficient methods for optimizing dynamic regret and adaptive regret, which reduce the number of projections per round from $mathcalO(log T)$ to $1$.
Our technique hinges on the reduction mechanism developed in parameter-free online learning and requires non-trivial twists on non-stationary online methods.
- Score: 67.3300478545554
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-stationary online learning has drawn much attention in recent years. In
particular, dynamic regret and adaptive regret are proposed as two principled
performance measures for online convex optimization in non-stationary
environments. To optimize them, a two-layer online ensemble is usually deployed
due to the inherent uncertainty of the non-stationarity, in which a group of
base-learners are maintained and a meta-algorithm is employed to track the best
one on the fly. However, the two-layer structure raises the concern about the
computational complexity -- those methods typically maintain $\mathcal{O}(\log
T)$ base-learners simultaneously for a $T$-round online game and thus perform
multiple projections onto the feasible domain per round, which becomes the
computational bottleneck when the domain is complicated. In this paper, we
present efficient methods for optimizing dynamic regret and adaptive regret,
which reduce the number of projections per round from $\mathcal{O}(\log T)$ to
$1$. Moreover, our obtained algorithms require only one gradient query and one
function evaluation at each round. Our technique hinges on the reduction
mechanism developed in parameter-free online learning and requires non-trivial
twists on non-stationary online methods. Empirical studies verify our
theoretical findings.
Related papers
- Variance Reduced Online Gradient Descent for Kernelized Pairwise
Learning with Limited Memory [19.822215548822882]
Online gradient descent (OGD) algorithms have been proposed to handle online pairwise learning, where data arrives sequentially.
Recent advancements in OGD algorithms have aimed to reduce the complexity of calculating online gradients, achieving complexities less than $O(T)$ and even as low as $O(1)$.
In this study, we propose a limited memory OGD algorithm that extends to kernel online pairwise learning while improving the sublinear regret.
arXiv Detail & Related papers (2023-10-10T09:50:54Z) - Improving Adaptive Online Learning Using Refined Discretization [44.646191058243645]
We study unconstrained Online Linear Optimization with Lipschitz losses.
Motivated by the pursuit of instance optimality, we propose a new algorithm.
Central to these results is a continuous time approach to online learning.
arXiv Detail & Related papers (2023-09-27T21:54:52Z) - Universal Online Learning with Gradient Variations: A Multi-layer Online Ensemble Approach [57.92727189589498]
We propose an online convex optimization approach with two different levels of adaptivity.
We obtain $mathcalO(log V_T)$, $mathcalO(d log V_T)$ and $hatmathcalO(sqrtV_T)$ regret bounds for strongly convex, exp-concave and convex loss functions.
arXiv Detail & Related papers (2023-07-17T09:55:35Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Proximal Point Imitation Learning [48.50107891696562]
We develop new algorithms with rigorous efficiency guarantees for infinite horizon imitation learning.
We leverage classical tools from optimization, in particular, the proximal-point method (PPM) and dual smoothing.
We achieve convincing empirical performance for both linear and neural network function approximation.
arXiv Detail & Related papers (2022-09-22T12:40:21Z) - Adaptivity and Non-stationarity: Problem-dependent Dynamic Regret for Online Convex Optimization [70.4342220499858]
We introduce novel online algorithms that can exploit smoothness and replace the dependence on $T$ in dynamic regret with problem-dependent quantities.
Our results are adaptive to the intrinsic difficulty of the problem, since the bounds are tighter than existing results for easy problems and safeguard the same rate in the worst case.
arXiv Detail & Related papers (2021-12-29T02:42:59Z) - Adaptive Approximate Policy Iteration [22.915651391812187]
We present a learning scheme which enjoys a $tildeO(T2/3)$ regret bound for undiscounted, continuing learning in uniformly ergodic MDPs.
This is an improvement over the best existing bound of $tildeO(T3/4)$ for the average-reward case with function approximation.
arXiv Detail & Related papers (2020-02-08T02:27:03Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
Self-directed Online Learning Optimization integrates Deep Neural Network (DNN) with Finite Element Method (FEM) calculations.
Our algorithm was tested by four types of problems including compliance minimization, fluid-structure optimization, heat transfer enhancement and truss optimization.
It reduced the computational time by 2 5 orders of magnitude compared with directly using methods, and outperformed all state-of-the-art algorithms tested in our experiments.
arXiv Detail & Related papers (2020-02-04T20:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.