COTReg:Coupled Optimal Transport based Point Cloud Registration
- URL: http://arxiv.org/abs/2112.14381v1
- Date: Wed, 29 Dec 2021 03:20:18 GMT
- Title: COTReg:Coupled Optimal Transport based Point Cloud Registration
- Authors: Guofeng Mei, Xiaoshui Huang, Litao Yu, Jian Zhang, and Mohammed
Bennamoun
- Abstract summary: This paper proposes a learning framework COTReg to predict correspondences of 3D point cloud registration.
We transform the two matchings into a Wasserstein distance-based and a Gromov-Wasserstein distance-based optimizations.
Our correspondence prediction pipeline can be easily integrated into either learning-based features like FCGF or traditional descriptors like FPFH.
- Score: 28.730827908402286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating a set of high-quality correspondences or matches is one of the
most critical steps in point cloud registration. This paper proposes a learning
framework COTReg by jointly considering the pointwise and structural matchings
to predict correspondences of 3D point cloud registration. Specifically, we
transform the two matchings into a Wasserstein distance-based and a
Gromov-Wasserstein distance-based optimizations, respectively. Thus the task of
establishing the correspondences can be naturally reshaped to a coupled optimal
transport problem. Furthermore, we design a network to predict the confidence
score of being an inlier for each point of the point clouds, which provides the
overlap region information to generate correspondences. Our correspondence
prediction pipeline can be easily integrated into either learning-based
features like FCGF or traditional descriptors like FPFH. We conducted
comprehensive experiments on 3DMatch, KITTI, 3DCSR, and ModelNet40 benchmarks,
showing the state-of-art performance of the proposed method.
Related papers
- Robust Point Cloud Registration Framework Based on Deep Graph
Matching(TPAMI Version) [13.286247750893681]
3D point cloud registration is a fundamental problem in computer vision and robotics.
We propose a novel deep graph matching-based framework for point cloud registration.
arXiv Detail & Related papers (2022-11-09T06:05:25Z) - Learning to Register Unbalanced Point Pairs [10.369750912567714]
Recent 3D registration methods can effectively handle large-scale or partially overlapping point pairs.
We present a novel 3D registration method, called UPPNet, for the unbalanced point pairs.
arXiv Detail & Related papers (2022-07-09T08:03:59Z) - REGTR: End-to-end Point Cloud Correspondences with Transformers [79.52112840465558]
We conjecture that attention mechanisms can replace the role of explicit feature matching and RANSAC.
We propose an end-to-end framework to directly predict the final set of correspondences.
Our approach achieves state-of-the-art performance on 3DMatch and ModelNet benchmarks.
arXiv Detail & Related papers (2022-03-28T06:01:00Z) - Multiway Non-rigid Point Cloud Registration via Learned Functional Map
Synchronization [105.14877281665011]
We present SyNoRiM, a novel way to register multiple non-rigid shapes by synchronizing the maps relating learned functions defined on the point clouds.
We demonstrate via extensive experiments that our method achieves a state-of-the-art performance in registration accuracy.
arXiv Detail & Related papers (2021-11-25T02:37:59Z) - Deep Hough Voting for Robust Global Registration [52.40611370293272]
We present an efficient framework for pairwise registration of real-world 3D scans, leveraging Hough voting in the 6D transformation parameter space.
Our method outperforms state-of-the-art methods on 3DMatch and 3DLoMatch benchmarks while achieving comparable performance on KITTI odometry dataset.
arXiv Detail & Related papers (2021-09-09T14:38:06Z) - UPDesc: Unsupervised Point Descriptor Learning for Robust Registration [54.95201961399334]
UPDesc is an unsupervised method to learn point descriptors for robust point cloud registration.
We show that our learned descriptors yield superior performance over existing unsupervised methods.
arXiv Detail & Related papers (2021-08-05T17:11:08Z) - SCTN: Sparse Convolution-Transformer Network for Scene Flow Estimation [71.2856098776959]
Estimating 3D motions for point clouds is challenging, since a point cloud is unordered and its density is significantly non-uniform.
We propose a novel architecture named Sparse Convolution-Transformer Network (SCTN) that equips the sparse convolution with the transformer.
We show that the learned relation-based contextual information is rich and helpful for matching corresponding points, benefiting scene flow estimation.
arXiv Detail & Related papers (2021-05-10T15:16:14Z) - Robust Point Cloud Registration Framework Based on Deep Graph Matching [5.865029600972316]
3D point cloud registration is a fundamental problem in computer vision and robotics.
We propose a novel deep graph matchingbased framework for point cloud registration.
arXiv Detail & Related papers (2021-03-07T04:20:29Z) - RPM-Net: Robust Point Matching using Learned Features [79.52112840465558]
RPM-Net is a less sensitive and more robust deep learning-based approach for rigid point cloud registration.
Unlike some existing methods, our RPM-Net handles missing correspondences and point clouds with partial visibility.
arXiv Detail & Related papers (2020-03-30T13:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.