REGTR: End-to-end Point Cloud Correspondences with Transformers
- URL: http://arxiv.org/abs/2203.14517v1
- Date: Mon, 28 Mar 2022 06:01:00 GMT
- Title: REGTR: End-to-end Point Cloud Correspondences with Transformers
- Authors: Zi Jian Yew and Gim Hee Lee
- Abstract summary: We conjecture that attention mechanisms can replace the role of explicit feature matching and RANSAC.
We propose an end-to-end framework to directly predict the final set of correspondences.
Our approach achieves state-of-the-art performance on 3DMatch and ModelNet benchmarks.
- Score: 79.52112840465558
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite recent success in incorporating learning into point cloud
registration, many works focus on learning feature descriptors and continue to
rely on nearest-neighbor feature matching and outlier filtering through RANSAC
to obtain the final set of correspondences for pose estimation. In this work,
we conjecture that attention mechanisms can replace the role of explicit
feature matching and RANSAC, and thus propose an end-to-end framework to
directly predict the final set of correspondences. We use a network
architecture consisting primarily of transformer layers containing self and
cross attentions, and train it to predict the probability each point lies in
the overlapping region and its corresponding position in the other point cloud.
The required rigid transformation can then be estimated directly from the
predicted correspondences without further post-processing. Despite its
simplicity, our approach achieves state-of-the-art performance on 3DMatch and
ModelNet benchmarks. Our source code can be found at
https://github.com/yewzijian/RegTR .
Related papers
- Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - Q-REG: End-to-End Trainable Point Cloud Registration with Surface
Curvature [81.25511385257344]
We present a novel solution, Q-REG, which utilizes rich geometric information to estimate the rigid pose from a single correspondence.
Q-REG allows to formalize the robust estimation as an exhaustive search, hence enabling end-to-end training.
We demonstrate in the experiments that Q-REG is agnostic to the correspondence matching method and provides consistent improvement both when used only in inference and in end-to-end training.
arXiv Detail & Related papers (2023-09-27T20:58:53Z) - A Strong Baseline for Point Cloud Registration via Direct Superpoints Matching [7.308509114539376]
We propose a simple and effective baseline to find correspondences of superpoints in a global matching manner.
Our simple yet effective baseline shows comparable or even better results than state-of-the-art methods on three datasets.
arXiv Detail & Related papers (2023-07-03T21:33:40Z) - Robust Point Cloud Registration Framework Based on Deep Graph
Matching(TPAMI Version) [13.286247750893681]
3D point cloud registration is a fundamental problem in computer vision and robotics.
We propose a novel deep graph matching-based framework for point cloud registration.
arXiv Detail & Related papers (2022-11-09T06:05:25Z) - COTReg:Coupled Optimal Transport based Point Cloud Registration [28.730827908402286]
This paper proposes a learning framework COTReg to predict correspondences of 3D point cloud registration.
We transform the two matchings into a Wasserstein distance-based and a Gromov-Wasserstein distance-based optimizations.
Our correspondence prediction pipeline can be easily integrated into either learning-based features like FCGF or traditional descriptors like FPFH.
arXiv Detail & Related papers (2021-12-29T03:20:18Z) - DFC: Deep Feature Consistency for Robust Point Cloud Registration [0.4724825031148411]
We present a novel learning-based alignment network for complex alignment scenes.
We validate our approach on the 3DMatch dataset and the KITTI odometry dataset.
arXiv Detail & Related papers (2021-11-15T08:27:21Z) - PCAM: Product of Cross-Attention Matrices for Rigid Registration of
Point Clouds [79.99653758293277]
PCAM is a neural network whose key element is a pointwise product of cross-attention matrices.
We show that PCAM achieves state-of-the-art results among methods which, like us, solve steps (a) and (b) jointly via deepnets.
arXiv Detail & Related papers (2021-10-04T09:23:27Z) - Deep Hough Voting for Robust Global Registration [52.40611370293272]
We present an efficient framework for pairwise registration of real-world 3D scans, leveraging Hough voting in the 6D transformation parameter space.
Our method outperforms state-of-the-art methods on 3DMatch and 3DLoMatch benchmarks while achieving comparable performance on KITTI odometry dataset.
arXiv Detail & Related papers (2021-09-09T14:38:06Z) - UPDesc: Unsupervised Point Descriptor Learning for Robust Registration [54.95201961399334]
UPDesc is an unsupervised method to learn point descriptors for robust point cloud registration.
We show that our learned descriptors yield superior performance over existing unsupervised methods.
arXiv Detail & Related papers (2021-08-05T17:11:08Z) - Point Cloud Registration using Representative Overlapping Points [10.843159482657303]
We propose ROPNet, a new deep learning model using Representative Overlapping Points with discriminative features for registration.
Specifically, we propose a context-guided module which uses an encoder to extract global features for predicting point overlap score.
Experiments over ModelNet40 using noisy and partially overlapping point clouds show that the proposed method outperforms traditional and learning-based methods.
arXiv Detail & Related papers (2021-07-06T12:52:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.