Topological transitions and Anderson localization of light in disordered
atomic arrays
- URL: http://arxiv.org/abs/2112.14673v2
- Date: Thu, 7 Apr 2022 10:11:55 GMT
- Title: Topological transitions and Anderson localization of light in disordered
atomic arrays
- Authors: S.E. Skipetrov and P. Wulles
- Abstract summary: We study the interplay of disorder and topological phenomena in honeycomb lattices of atoms coupled by the electromagnetic field.
On the one hand, disorder can trigger insulator transitions between distinct topological phases and drive the lattice into the topological Anderson state.
We find that disorder can both open a topological pseudogap in the spectrum of an otherwise topologically trivial system and introduce spatially localized modes inside it.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore the interplay of disorder and topological phenomena in honeycomb
lattices of atoms coupled by the electromagnetic field. On the one hand,
disorder can trigger transitions between distinct topological phases and drive
the lattice into the topological Anderson insulator state. On the other hand,
the nontrivial topology of the photonic band structure suppresses Anderson
localization of modes that disorder introduces inside the band gap of the ideal
lattice. Furthermore, we discover that disorder can both open a topological
pseudogap in the spectrum of an otherwise topologically trivial system and
introduce spatially localized modes inside it.
Related papers
- Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Real-space detection and manipulation of topological edge modes with
ultracold atoms [56.34005280792013]
We demonstrate an experimental protocol for realizing chiral edge modes in optical lattices.
We show how to efficiently prepare particles in these edge modes in three distinct Floquet topological regimes.
We study how edge modes emerge at the interface and how the group velocity of the particles is modified as the sharpness of the potential step is varied.
arXiv Detail & Related papers (2023-04-04T17:36:30Z) - Topological multi-mode waveguide QED [49.1574468325115]
We show how to take advantage of topologically protected propagating modes by interfacing them with quantum emitters.
Such capabilities pave the way for generating quantum gates among topologically protected photons as well as generating more complex entangled states of light in topological channels.
arXiv Detail & Related papers (2022-07-05T14:48:50Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Observation of non-Hermitian topological Anderson insulator in quantum
dynamics [8.119496606443793]
Disorder and non-Hermiticity dramatically impact the topological and localization properties of a quantum system.
We experimentally simulate the non-Hermitian topological Anderson insulator using disordered photonic quantum walks.
arXiv Detail & Related papers (2021-08-02T18:00:18Z) - Connecting Topological Anderson and Mott Insulators in Disordered
Interacting Fermionic Systems [1.5407629399378573]
We combine the two seemingly different topological phases into a system of spin-1/2 interacting fermionic atoms in a disordered optical lattice.
We find that the topological Anderson and Mott insulators in the noninteracting and clean limits can be adiabatically connected without gap closing.
We develop an approach to provide a unified and clear description of topological phase transitions driven by interaction and disorder.
arXiv Detail & Related papers (2021-05-08T09:02:44Z) - Topological transitions induced by cavity-mediated interactions in
photonic valley-Hall metasurfaces [0.0]
Topological phases of light exhibit unique properties beyond the realm of conventional photonics.
We propose a mechanism to induce topological transitions via accidental Dirac points in metasurfaces composed of interacting dipole emitters/antennas.
This mechanism could have important implications for other topological phases such as photonic higher-order topological insulators.
arXiv Detail & Related papers (2020-10-04T17:25:49Z) - Topological Anderson phase in quasi-periodic waveguide lattices [0.0]
We consider a Su-Schrieffer-Heeger (SSH) waveguide lattice in the trivial topological phase.
We show that quasi-periodic disorder in the coupling constants can drive the lattice into a topological non-trivial phase.
arXiv Detail & Related papers (2020-08-14T17:54:22Z) - Topological Anderson insulators in two-dimensional non-Hermitian
disordered systems [1.8057851545459673]
We study the interplay in a non-Hermitian disordered Chern-insulator model with two typical kinds of non-Hermiticities.
The nonreciprocal hopping (the gain-and-loss effect) can enlarge (reduce) the topological regions.
The topological Anderson insulators induced by disorders can exist under both kinds of non-Hermiticities.
arXiv Detail & Related papers (2020-05-27T07:08:04Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.