論文の概要: Dense Depth Estimation from Multiple 360-degree Images Using Virtual
Depth
- arxiv url: http://arxiv.org/abs/2112.14931v1
- Date: Thu, 30 Dec 2021 05:27:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-03 13:57:32.021528
- Title: Dense Depth Estimation from Multiple 360-degree Images Using Virtual
Depth
- Title(参考訳): 仮想深度を用いた複数の360度画像からの深度推定
- Authors: Seongyeop Yang, Kunhee Kim, Yeejin Lee
- Abstract要約: 提案したパイプラインは、360度画像の半径歪みを補償する球面カメラモデルを活用する。
仮想深度の設定とフォトニック再射誤差の最小化による効果的な深度推定法を提案する。
実験により,提案したパイプラインは,現在最先端の深度推定法と比較して推定精度が向上することを確認した。
- 参考スコア(独自算出の注目度): 4.984601297028257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a dense depth estimation pipeline for multiview
360\degree\: images. The proposed pipeline leverages a spherical camera model
that compensates for radial distortion in 360\degree\: images. The key
contribution of this paper is the extension of a spherical camera model to
multiview by introducing a translation scaling scheme. Moreover, we propose an
effective dense depth estimation method by setting virtual depth and minimizing
photonic reprojection error. We validate the performance of the proposed
pipeline using the images of natural scenes as well as the synthesized dataset
for quantitive evaluation. The experimental results verify that the proposed
pipeline improves estimation accuracy compared to the current state-of-art
dense depth estimation methods.
- Abstract(参考訳): 本稿では,マルチビュー360度画像のための深度推定パイプラインを提案する。
提案したパイプラインは、360度画像の半径歪みを補償する球面カメラモデルを利用する。
本稿では,球面カメラモデルから多視点への変換スケーリング手法の導入による拡張について述べる。
さらに,仮想深度の設定とフォトニック再投影誤差の最小化により,効率的な深度推定手法を提案する。
提案するパイプラインの性能を,自然シーンの画像と合成データセットを用いて検証し,定量的評価を行った。
実験結果から,提案パイプラインは,現在の高密度深部推定法に比べ,推定精度が向上することを確認した。
関連論文リスト
- ScaleDepth: Decomposing Metric Depth Estimation into Scale Prediction and Relative Depth Estimation [62.600382533322325]
本研究では,新しい単分子深度推定法であるScaleDepthを提案する。
提案手法は,距離深度をシーンスケールと相対深度に分解し,セマンティック・アウェア・スケール予測モジュールを用いて予測する。
本手法は,室内と屋外の両方のシーンを統一した枠組みで距離推定する。
論文 参考訳(メタデータ) (2024-07-11T05:11:56Z) - Depth Anywhere: Enhancing 360 Monocular Depth Estimation via Perspective Distillation and Unlabeled Data Augmentation [6.832852988957967]
ラベルのない360度データを効果的に活用する新しい深度推定フレームワークを提案する。
提案手法では,教師モデルとして最先端の視点深度推定モデルを用いて擬似ラベルを生成する。
我々は、Matterport3DやStanford2D3Dといったベンチマークデータセットに対するアプローチを検証し、深さ推定精度を大幅に改善した。
論文 参考訳(メタデータ) (2024-06-18T17:59:31Z) - Single Image Depth Prediction Made Better: A Multivariate Gaussian Take [163.14849753700682]
本稿では,画素ごとの深度を連続的にモデル化する手法を提案する。
提案手法の精度(MG)は,KITTI深度予測ベンチマークリーダーボードの上位に位置する。
論文 参考訳(メタデータ) (2023-03-31T16:01:03Z) - Monocular Visual-Inertial Depth Estimation [66.71452943981558]
単眼深度推定と視覚慣性計測を統合した視覚慣性深度推定パイプラインを提案する。
提案手法は, 疎度度に対する大域的スケールとシフトアライメントを行い, 続いて学習に基づく高密度アライメントを行う。
本研究では,TartanAir と VOID のデータセットを用いて,密集したスケールアライメントによるRMSE の最大30%の削減を観測した。
論文 参考訳(メタデータ) (2023-03-21T18:47:34Z) - DiffusionDepth: Diffusion Denoising Approach for Monocular Depth
Estimation [23.22005119986485]
DiffusionDepthは、単分子深度推定をデノナイズ拡散過程として再構成する新しいアプローチである。
ランダムな深度分布をモノラルな視覚条件のガイダンスで深度マップに分解する反復的復調過程を学習する。
KITTIとNYU-Depth-V2データセットの実験結果は、シンプルだが効率的な拡散アプローチが、許容可能な推論時間を持つ屋内および屋外の両方のシナリオで最先端のパフォーマンスに達することを示唆している。
論文 参考訳(メタデータ) (2023-03-09T03:48:24Z) - Depth Estimation from Single-shot Monocular Endoscope Image Using Image
Domain Adaptation And Edge-Aware Depth Estimation [1.7086737326992167]
領域適応によるランベルト面の変換とマルチスケールエッジロスを用いた深度推定による単眼単眼単眼内視鏡像からの深度推定法を提案する。
臓器の表面のテクスチャと特異反射により、深さ推定の精度が低下する。
本研究では,畳み込みニューラルネットワークを用いた大腸内視鏡像の解剖学的位置同定に,推定深度画像を適用した。
論文 参考訳(メタデータ) (2022-01-12T14:06:54Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
多視点測光ステレオ問題(MVPS)に対する現代的な解法を提案する。
我々は、光度ステレオ(PS)画像形成モデルを用いて表面配向を取得し、それを多視点のニューラルラディアンス場表現とブレンドして物体の表面形状を復元する。
本手法は,多視点画像のニューラルレンダリングを行い,深部光度ステレオネットワークによって推定される表面の正規性を活用している。
論文 参考訳(メタデータ) (2021-10-11T20:20:03Z) - Differentiable Diffusion for Dense Depth Estimation from Multi-view
Images [31.941861222005603]
深度マップへの拡散がRGB監督からの多視点再投射誤差を最小限に抑えるように、細かな点集合を最適化することにより、深度を推定する手法を提案する。
また,複雑なシーン再構成に必要な50k以上のポイントを同時に最適化できる効率的な最適化ルーチンを開発した。
論文 参考訳(メタデータ) (2021-06-16T16:17:34Z) - Progressive Depth Learning for Single Image Dehazing [56.71963910162241]
既存の脱湿法は、しばしば深度を無視し、より重いヘイズが視界を乱す遠くの地域で失敗する。
画像深度と伝送マップを反復的に推定するディープエンドツーエンドモデルを提案する。
私たちのアプローチは、画像深度と伝送マップの内部関係を明示的にモデリングすることから利益を得ます。
論文 参考訳(メタデータ) (2021-02-21T05:24:18Z) - Variational Monocular Depth Estimation for Reliability Prediction [12.951621755732544]
教師付き学習手法の代替として,単眼深度推定のための自己教師付き学習が広く研究されている。
従来はモデル構造の変更による深度推定の精度向上に成功している。
本稿では, 単眼深度推定のための変分モデルを理論的に定式化し, 推定深度画像の信頼性を推定する。
論文 参考訳(メタデータ) (2020-11-24T06:23:51Z) - D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual
Odometry [57.5549733585324]
D3VOは、深度、ポーズ、不確実性推定という3つのレベルでディープネットワークを利用する、単眼の視覚計測のための新しいフレームワークである。
まず,ステレオビデオを用いた自己監督型単眼深度推定ネットワークを提案する。
入力画像上の画素の光度不確かさをモデル化し、深度推定精度を向上させる。
論文 参考訳(メタデータ) (2020-03-02T17:47:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。