InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering
- URL: http://arxiv.org/abs/2112.15399v1
- Date: Fri, 31 Dec 2021 11:56:01 GMT
- Title: InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering
- Authors: Mijeong Kim, Seonguk Seo, Bohyung Han
- Abstract summary: We present an information-theoretic regularization technique for few-shot novel view synthesis based on neural implicit representation.
The proposed approach minimizes potential reconstruction inconsistency that happens due to insufficient viewpoints.
We achieve consistently improved performance compared to existing neural view synthesis methods by large margins on multiple standard benchmarks.
- Score: 55.70938412352287
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an information-theoretic regularization technique for few-shot
novel view synthesis based on neural implicit representation. The proposed
approach minimizes potential reconstruction inconsistency that happens due to
insufficient viewpoints by imposing the entropy constraint of the density in
each ray. In addition, to alleviate the potential degenerate issue when all
training images are acquired from almost redundant viewpoints, we further
incorporate the spatially smoothness constraint into the estimated images by
restricting information gains from a pair of rays with slightly different
viewpoints. The main idea of our algorithm is to make reconstructed scenes
compact along individual rays and consistent across rays in the neighborhood.
The proposed regularizers can be plugged into most of existing neural volume
rendering techniques based on NeRF in a straightforward way. Despite its
simplicity, we achieve consistently improved performance compared to existing
neural view synthesis methods by large margins on multiple standard benchmarks.
Our project website is available at
\url{http://cvlab.snu.ac.kr/research/InfoNeRF}.
Related papers
- NeRF-Casting: Improved View-Dependent Appearance with Consistent Reflections [57.63028964831785]
Recent works have improved NeRF's ability to render detailed specular appearance of distant environment illumination, but are unable to synthesize consistent reflections of closer content.
We address these issues with an approach based on ray tracing.
Instead of querying an expensive neural network for the outgoing view-dependent radiance at points along each camera ray, our model casts rays from these points and traces them through the NeRF representation to render feature vectors.
arXiv Detail & Related papers (2024-05-23T17:59:57Z) - Re-Nerfing: Improving Novel View Synthesis through Novel View Synthesis [80.3686833921072]
Recent neural rendering and reconstruction techniques, such as NeRFs or Gaussian Splatting, have shown remarkable novel view synthesis capabilities.
With fewer images available, these methods start to fail since they can no longer correctly triangulate the underlying 3D geometry.
We propose Re-Nerfing, a simple and general add-on approach that leverages novel view synthesis itself to tackle this problem.
arXiv Detail & Related papers (2023-12-04T18:56:08Z) - FlipNeRF: Flipped Reflection Rays for Few-shot Novel View Synthesis [30.25904672829623]
We propose FlipNeRF, a novel regularization method for few-shot novel view synthesis by utilizing our proposed flipped reflection rays.
FlipNeRF is able to estimate more reliable outputs with reducing floating artifacts effectively across the different scene structures.
arXiv Detail & Related papers (2023-06-30T15:11:00Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
TensoIR is a novel inverse rendering approach based on tensor factorization and neural fields.
TensoRF is a state-of-the-art approach for radiance field modeling.
arXiv Detail & Related papers (2023-04-24T21:39:13Z) - IntrinsicNeRF: Learning Intrinsic Neural Radiance Fields for Editable
Novel View Synthesis [90.03590032170169]
We present intrinsic neural radiance fields, dubbed IntrinsicNeRF, which introduce intrinsic decomposition into the NeRF-based neural rendering method.
Our experiments and editing samples on both object-specific/room-scale scenes and synthetic/real-word data demonstrate that we can obtain consistent intrinsic decomposition results.
arXiv Detail & Related papers (2022-10-02T22:45:11Z) - Cascaded and Generalizable Neural Radiance Fields for Fast View
Synthesis [35.035125537722514]
We present CG-NeRF, a cascade and generalizable neural radiance fields method for view synthesis.
We first train CG-NeRF on multiple 3D scenes of the DTU dataset.
We show that CG-NeRF outperforms state-of-the-art generalizable neural rendering methods on various synthetic and real datasets.
arXiv Detail & Related papers (2022-08-09T12:23:48Z) - Neural Rays for Occlusion-aware Image-based Rendering [108.34004858785896]
We present a new neural representation, called Neural Ray (NeuRay), for the novel view synthesis (NVS) task with multi-view images as input.
NeuRay can quickly generate high-quality novel view rendering images of unseen scenes with little finetuning.
arXiv Detail & Related papers (2021-07-28T15:09:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.