TensoIR: Tensorial Inverse Rendering
- URL: http://arxiv.org/abs/2304.12461v3
- Date: Sun, 17 Mar 2024 04:57:18 GMT
- Title: TensoIR: Tensorial Inverse Rendering
- Authors: Haian Jin, Isabella Liu, Peijia Xu, Xiaoshuai Zhang, Songfang Han, Sai Bi, Xiaowei Zhou, Zexiang Xu, Hao Su,
- Abstract summary: TensoIR is a novel inverse rendering approach based on tensor factorization and neural fields.
TensoRF is a state-of-the-art approach for radiance field modeling.
- Score: 51.57268311847087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose TensoIR, a novel inverse rendering approach based on tensor factorization and neural fields. Unlike previous works that use purely MLP-based neural fields, thus suffering from low capacity and high computation costs, we extend TensoRF, a state-of-the-art approach for radiance field modeling, to estimate scene geometry, surface reflectance, and environment illumination from multi-view images captured under unknown lighting conditions. Our approach jointly achieves radiance field reconstruction and physically-based model estimation, leading to photo-realistic novel view synthesis and relighting results. Benefiting from the efficiency and extensibility of the TensoRF-based representation, our method can accurately model secondary shading effects (like shadows and indirect lighting) and generally support input images captured under single or multiple unknown lighting conditions. The low-rank tensor representation allows us to not only achieve fast and compact reconstruction but also better exploit shared information under an arbitrary number of capturing lighting conditions. We demonstrate the superiority of our method to baseline methods qualitatively and quantitatively on various challenging synthetic and real-world scenes.
Related papers
- NePF: Neural Photon Field for Single-Stage Inverse Rendering [6.977356702921476]
We present a novel single-stage framework, Neural Photon Field (NePF), to address the ill-posed inverse rendering from multi-view images.
NePF achieves this unification by fully utilizing the physical implication behind the weight function of neural implicit surfaces.
We evaluate our method on both real and synthetic datasets.
arXiv Detail & Related papers (2023-11-20T06:15:46Z) - CeRF: Convolutional Neural Radiance Fields for New View Synthesis with Derivatives of Ray Modeling [16.788271424754488]
We introduce the Conal Neural Radiance Fields to model the derivatives of radiance along rays.
Based on 1D convolutional operations, our proposed method effectively extracts potential ray representations through a structured neural network architecture.
arXiv Detail & Related papers (2023-07-14T02:26:05Z) - Neural Relighting with Subsurface Scattering by Learning the Radiance
Transfer Gradient [73.52585139592398]
We propose a novel framework for learning the radiance transfer field via volume rendering.
We will release our code and a novel light stage dataset of objects with subsurface scattering effects publicly available.
arXiv Detail & Related papers (2023-06-15T17:56:04Z) - NeuS-PIR: Learning Relightable Neural Surface using Pre-Integrated Rendering [23.482941494283978]
This paper presents a method, namely NeuS-PIR, for recovering relightable neural surfaces from multi-view images or video.
Unlike methods based on NeRF and discrete meshes, our method utilizes implicit neural surface representation to reconstruct high-quality geometry.
Our method enables advanced applications such as relighting, which can be seamlessly integrated with modern graphics engines.
arXiv Detail & Related papers (2023-06-13T09:02:57Z) - NeAI: A Pre-convoluted Representation for Plug-and-Play Neural Ambient
Illumination [28.433403714053103]
We propose a framework named neural ambient illumination (NeAI)
NeAI uses Neural Radiance Fields (NeRF) as a lighting model to handle complex lighting in a physically based way.
Experiments demonstrate the superior performance of novel-view rendering compared to previous works.
arXiv Detail & Related papers (2023-04-18T06:32:30Z) - NeILF++: Inter-Reflectable Light Fields for Geometry and Material
Estimation [36.09503501647977]
We formulate the lighting of a static scene as one neural incident light field (NeILF) and one outgoing neural radiance field (NeRF)
The proposed method is able to achieve state-of-the-art results in terms of geometry reconstruction quality, material estimation accuracy, and the fidelity of novel view rendering.
arXiv Detail & Related papers (2023-03-30T04:59:48Z) - NeFII: Inverse Rendering for Reflectance Decomposition with Near-Field
Indirect Illumination [48.42173911185454]
Inverse rendering methods aim to estimate geometry, materials and illumination from multi-view RGB images.
We propose an end-to-end inverse rendering pipeline that decomposes materials and illumination from multi-view images.
arXiv Detail & Related papers (2023-03-29T12:05:19Z) - InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering [55.70938412352287]
We present an information-theoretic regularization technique for few-shot novel view synthesis based on neural implicit representation.
The proposed approach minimizes potential reconstruction inconsistency that happens due to insufficient viewpoints.
We achieve consistently improved performance compared to existing neural view synthesis methods by large margins on multiple standard benchmarks.
arXiv Detail & Related papers (2021-12-31T11:56:01Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z) - Towards High Fidelity Monocular Face Reconstruction with Rich
Reflectance using Self-supervised Learning and Ray Tracing [49.759478460828504]
Methods combining deep neural network encoders with differentiable rendering have opened up the path for very fast monocular reconstruction of geometry, lighting and reflectance.
ray tracing was introduced for monocular face reconstruction within a classic optimization-based framework.
We propose a new method that greatly improves reconstruction quality and robustness in general scenes.
arXiv Detail & Related papers (2021-03-29T08:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.