TransLog: A Unified Transformer-based Framework for Log Anomaly
Detection
- URL: http://arxiv.org/abs/2201.00016v1
- Date: Fri, 31 Dec 2021 10:46:14 GMT
- Title: TransLog: A Unified Transformer-based Framework for Log Anomaly
Detection
- Authors: Hongcheng Guo, Xingyu Lin, Jian Yang, Yi Zhuang, Jiaqi Bai, Bo Zhang,
Tieqiao Zheng, Zhoujun Li
- Abstract summary: Ourmethod is comprised of the pretraining and adapter-based tuning stage.
Our simple yet efficient approach, with fewer trainable parameters and lower training costs in the target domain, achieves state-of-the-art performance on three benchmarks.
- Score: 29.29752871868652
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Log anomaly detection is a key component in the field of artificial
intelligence for IT operations (AIOps). Considering log data of variant
domains, retraining the whole network for unknown domains is inefficient in
real industrial scenarios especially for low-resource domains. However,
previous deep models merely focused on extracting the semantics of log sequence
in the same domain, leading to poor generalization on multi-domain logs.
Therefore, we propose a unified Transformer-based framework for log anomaly
detection (\ourmethod{}), which is comprised of the pretraining and
adapter-based tuning stage. Our model is first pretrained on the source domain
to obtain shared semantic knowledge of log data. Then, we transfer the
pretrained model to the target domain via the adapter-based tuning. The
proposed method is evaluated on three public datasets including one source
domain and two target domains. The experimental results demonstrate that our
simple yet efficient approach, with fewer trainable parameters and lower
training costs in the target domain, achieves state-of-the-art performance on
three benchmarks.
Related papers
- LogFormer: A Pre-train and Tuning Pipeline for Log Anomaly Detection [73.69399219776315]
We propose a unified Transformer-based framework for Log anomaly detection (LogFormer) to improve the generalization ability across different domains.
Specifically, our model is first pre-trained on the source domain to obtain shared semantic knowledge of log data.
Then, we transfer such knowledge to the target domain via shared parameters.
arXiv Detail & Related papers (2024-01-09T12:55:21Z) - Low-confidence Samples Matter for Domain Adaptation [47.552605279925736]
Domain adaptation (DA) aims to transfer knowledge from a label-rich source domain to a related but label-scarce target domain.
We propose a novel contrastive learning method by processing low-confidence samples.
We evaluate the proposed method in both unsupervised and semi-supervised DA settings.
arXiv Detail & Related papers (2022-02-06T15:45:45Z) - Multiple-Source Domain Adaptation via Coordinated Domain Encoders and
Paired Classifiers [1.52292571922932]
We present a novel model for text classification under domain shift.
It exploits the update representations to dynamically integrate domain encoders.
It also employs a probabilistic model to infer the error rate in the target domain.
arXiv Detail & Related papers (2022-01-28T00:50:01Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - Unsupervised Intra-domain Adaptation for Semantic Segmentation through
Self-Supervision [73.76277367528657]
Convolutional neural network-based approaches have achieved remarkable progress in semantic segmentation.
To cope with this limitation, automatically annotated data generated from graphic engines are used to train segmentation models.
We propose a two-step self-supervised domain adaptation approach to minimize the inter-domain and intra-domain gap together.
arXiv Detail & Related papers (2020-04-16T15:24:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.