論文の概要: Dynamic Scene Video Deblurring using Non-Local Attention
- arxiv url: http://arxiv.org/abs/2201.00169v1
- Date: Sat, 1 Jan 2022 11:17:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-04 15:23:10.829914
- Title: Dynamic Scene Video Deblurring using Non-Local Attention
- Title(参考訳): 非局所的注意による動的シーン映像の劣化
- Authors: Maitreya Suin, A. N. Rajagopalan
- Abstract要約: 本研究では,時間と空間にまたがる非局所的な操作を行うための時間的因子化手法を提案する。
既存の核融合技術に比べて優れた性能を示しながら、非常に効率的である。
- 参考スコア(独自算出の注目度): 40.26663950834062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper tackles the challenging problem of video deblurring. Most of the
existing works depend on implicit or explicit alignment for temporal
information fusion which either increase the computational cost or result in
suboptimal performance due to wrong alignment. In this study, we propose a
factorized spatio-temporal attention to perform non-local operations across
space and time to fully utilize the available information without depending on
alignment. It shows superior performance compared to existing fusion techniques
while being much efficient. Extensive experiments on multiple datasets
demonstrate the superiority of our method.
- Abstract(参考訳): 本稿では,ビデオデブロアリングの課題に対処する。
既存の作業の多くは、時間情報融合の暗黙的あるいは明示的なアライメントに依存しており、計算コストを増大させるか、あるいは間違ったアライメントによる最適以下のパフォーマンスをもたらす。
本研究では,空間と時間にまたがる非局所的な操作を,アライメントに依存することなく完全に活用するための分解時空間注意を提案する。
既存の核融合技術に比べて優れた性能を示しながら、非常に効率的である。
複数のデータセットに対する大規模な実験により,本手法の優位性が示された。
関連論文リスト
- HAVANA: Hierarchical stochastic neighbor embedding for Accelerated Video ANnotAtions [59.71751978599567]
本稿では,時間的ビデオアノテーションプロセスの高速化のために,事前抽出した特徴量と次元減少量を用いた新しいアノテーションパイプラインを提案する。
従来のリニア手法と比較して,アノテーションの取り組みが大幅に改善され,12時間以上のビデオのアノテートに要するクリック数が10倍以上に短縮された。
論文 参考訳(メタデータ) (2024-09-16T18:15:38Z) - Learning Temporally Consistent Video Depth from Video Diffusion Priors [57.929828486615605]
本研究は,映像深度推定の課題に対処する。
我々は予測タスクを条件付き生成問題に再構成する。
これにより、既存のビデオ生成モデルに埋め込まれた事前の知識を活用することができる。
論文 参考訳(メタデータ) (2024-06-03T16:20:24Z) - Towards Efficient and Effective Text-to-Video Retrieval with
Coarse-to-Fine Visual Representation Learning [15.998149438353133]
テキスト間検索のための2段階検索アーキテクチャを提案する。
トレーニングフェーズでは、パラメータフリーなテキストゲートインタラクションブロック(TIB)を設計し、詳細なビデオ表現学習を行う。
検索段階では、上位k候補を高速にリコールするために粗粒度映像表現を使用し、その後、細粒度映像表現によって再帰する。
論文 参考訳(メタデータ) (2024-01-01T08:54:18Z) - CAST: Cross-Attention in Space and Time for Video Action Recognition [8.785207228156098]
空間時間におけるクロスアテンション(CAST)と呼ばれる新しい2ストリームアーキテクチャを提案する。
CASTは、バランスの取れた入力のみを使用して、ビデオの時間的バランスの取れた理解を実現する。
提案手法により,空間的・時間的専門家モデルによる情報交換と相乗的予測が可能となる。
論文 参考訳(メタデータ) (2023-11-30T18:58:51Z) - Alignment-guided Temporal Attention for Video Action Recognition [18.5171795689609]
フレームごとのアライメントは、フレーム表現間の相互情報を増大させる可能性があることを示す。
隣接フレーム間のパラメータフリーパッチレベルのアライメントで1次元の時間的注意を延長するためのアライメント誘導時間注意(ATA)を提案する。
論文 参考訳(メタデータ) (2022-09-30T23:10:47Z) - Mitigating Representation Bias in Action Recognition: Algorithms and
Benchmarks [76.35271072704384]
ディープラーニングモデルは、稀なシーンやオブジェクトを持つビデオに適用すると、パフォーマンスが悪くなります。
この問題にはアルゴリズムとデータセットの2つの異なる角度から対処する。
偏りのある表現は、他のデータセットやタスクに転送するとより一般化できることを示す。
論文 参考訳(メタデータ) (2022-09-20T00:30:35Z) - Learning by Aligning Videos in Time [10.075645944474287]
本稿では,時間的映像アライメントを前提課題として,映像表現を学習するための自己教師型アプローチを提案する。
我々は、エンコーダネットワークをトレーニングするための監視信号として使用できる、時間的アライメント損失と時間的正規化項の新たな組み合わせを利用する。
論文 参考訳(メタデータ) (2021-03-31T17:55:52Z) - Coherent Loss: A Generic Framework for Stable Video Segmentation [103.78087255807482]
ビデオセグメンテーションの結果の視覚的品質を,ジッタリングアーティファクトがいかに劣化させるかを検討する。
本稿では,ニューラルネットワークの性能向上を目的とした汎用フレームワークを備えたコヒーレントロスを提案する。
論文 参考訳(メタデータ) (2020-10-25T10:48:28Z) - Unsupervised Feature Learning for Event Data: Direct vs Inverse Problem
Formulation [53.850686395708905]
イベントベースのカメラは、ピクセルごとの明るさ変化の非同期ストリームを記録する。
本稿では,イベントデータからの表現学習のための単一層アーキテクチャに焦点を当てる。
我々は,最先端手法と比較して,認識精度が最大9%向上したことを示す。
論文 参考訳(メタデータ) (2020-09-23T10:40:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。