Subspace modeling for fast and high-sensitivity X-ray chemical imaging
- URL: http://arxiv.org/abs/2201.00259v1
- Date: Sat, 1 Jan 2022 23:26:06 GMT
- Title: Subspace modeling for fast and high-sensitivity X-ray chemical imaging
- Authors: Jizhou Li, Bin Chen, Guibin Zan, Guannan Qian, Piero Pianetta, Yijin
Liu
- Abstract summary: The TXM-XANES imaging technique has been an emerging tool which operates by acquiring a series of microscopy images with multi-energy X-rays and fitting to obtain the chemical map.
We introduce a simple and robust denoising approach to improve the image quality, which enables fast and high-sensitivity chemical imaging.
- Score: 4.062272647963248
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Resolving morphological chemical phase transformations at the nanoscale is of
vital importance to many scientific and industrial applications across various
disciplines. The TXM-XANES imaging technique, by combining full field
transmission X-ray microscopy (TXM) and X-ray absorption near edge structure
(XANES), has been an emerging tool which operates by acquiring a series of
microscopy images with multi-energy X-rays and fitting to obtain the chemical
map. Its capability, however, is limited by the poor signal-to-noise ratios due
to the system errors and low exposure illuminations for fast acquisition. In
this work, by exploiting the intrinsic properties and subspace modeling of the
TXM-XANES imaging data, we introduce a simple and robust denoising approach to
improve the image quality, which enables fast and high-sensitivity chemical
imaging. Extensive experiments on both synthetic and real datasets demonstrate
the superior performance of the proposed method.
Related papers
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Augmenting x-ray single particle imaging reconstruction with
self-supervised machine learning [5.109422776828829]
We present an end-to-end, self-supervised machine learning approach to recover particle orientations and estimate reciprocal space intensities from diffraction images only.
Our method demonstrates great robustness under demanding experimental conditions with significantly enhanced reconstruction capabilities compared with conventional algorithms.
arXiv Detail & Related papers (2023-11-28T10:05:44Z) - Robust retrieval of material chemical states in X-ray microspectroscopy [10.621361408885765]
We propose a novel data formulation model for X-ray microspectroscopy and develop a dedicated unmixing framework to solve this problem.
Our framework can accurately identify and characterize chemical states in complex and heterogeneous samples, even under challenging conditions.
arXiv Detail & Related papers (2023-08-08T12:17:02Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - X-Ray2EM: Uncertainty-Aware Cross-Modality Image Reconstruction from
X-Ray to Electron Microscopy in Connectomics [55.6985304397137]
We propose an uncertainty-aware 3D reconstruction model that translates X-ray images to EM-like images with enhanced membrane segmentation quality.
This shows its potential for developing simpler, faster, and more accurate X-ray based connectomics pipelines.
arXiv Detail & Related papers (2023-03-02T00:52:41Z) - Deep learning at the edge enables real-time streaming ptychographic
imaging [7.4083593332068975]
Coherent microscopy techniques like ptychography are poised to revolutionize nanoscale materials characterization.
Traditional approaches no longer suffice for recovering sample images in real-time from high-speed coherent imaging experiments.
Here, we demonstrate a workflow that leverages artificial intelligence at the edge and high-performance computing to enable real-time inversion on X-ray ptychography data streamed directly from a detector at up to 2 kHz.
arXiv Detail & Related papers (2022-09-20T02:02:37Z) - Non-destructive X-ray imaging of patterned delta-layer devices in
silicon [0.0]
We exploit X-ray fluorescence to create an element-specific image of As dopants in silicon.
With next generation synchrotron radiation sources and more advanced optics, we foresee that it will be possible to obtain X-ray images of single dopant atoms within resolved radii of 5nm.
arXiv Detail & Related papers (2022-08-19T14:49:54Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
We propose an approach for fusing hyperspectral and multispectral images to provide high-quality hyperspectral output.
We demonstrate that the proposed sparse fusion and reconstruction provides quantitatively superior results when compared to existing methods on publicly available images.
arXiv Detail & Related papers (2020-03-15T23:07:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.