Robust retrieval of material chemical states in X-ray microspectroscopy
- URL: http://arxiv.org/abs/2308.04207v1
- Date: Tue, 8 Aug 2023 12:17:02 GMT
- Title: Robust retrieval of material chemical states in X-ray microspectroscopy
- Authors: Ting Wang, Xiaotong Wu, Jizhou Li, Chao Wang
- Abstract summary: We propose a novel data formulation model for X-ray microspectroscopy and develop a dedicated unmixing framework to solve this problem.
Our framework can accurately identify and characterize chemical states in complex and heterogeneous samples, even under challenging conditions.
- Score: 10.621361408885765
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: X-ray microspectroscopic techniques are essential for studying morphological
and chemical changes in materials, providing high-resolution structural and
spectroscopic information. However, its practical data analysis for reliably
retrieving the chemical states remains a major obstacle to accelerating the
fundamental understanding of materials in many research fields. In this work,
we propose a novel data formulation model for X-ray microspectroscopy and
develop a dedicated unmixing framework to solve this problem, which is robust
to noise and spectral variability. Moreover, this framework is not limited to
the analysis of two-state material chemistry, making it an effective
alternative to conventional and widely-used methods. In addition, an
alternative directional multiplier method with provable convergence is applied
to obtain the solution efficiently. Our framework can accurately identify and
characterize chemical states in complex and heterogeneous samples, even under
challenging conditions such as low signal-to-noise ratios and overlapping
spectral features. Extensive experimental results on simulated and real
datasets demonstrate its effectiveness and reliability.
Related papers
- Fast and Reliable Probabilistic Reflectometry Inversion with Prior-Amortized Neural Posterior Estimation [73.81105275628751]
Finding all structures compatible with reflectometry data is computationally prohibitive for standard algorithms.
We address this lack of reliability with a probabilistic deep learning method that identifies all realistic structures in seconds.
Our method, Prior-Amortized Neural Posterior Estimation (PANPE), combines simulation-based inference with novel adaptive priors.
arXiv Detail & Related papers (2024-07-26T10:29:16Z) - Deep Learning Domain Adaptation to Understand Physico-Chemical Processes from Fluorescence Spectroscopy Small Datasets: Application to Ageing of Olive Oil [4.14360329494344]
Fluorescence spectroscopy is a fundamental tool in life sciences and chemistry, widely used for applications such as environmental monitoring, food quality control, and biomedical diagnostics.
Analysis of spectroscopic data with deep learning, in particular of fluorescence excitation-emission matrices (EEMs), presents significant challenges due to the typically small and sparse datasets available.
This study proposes a new approach that exploits domain adaptation with pretrained vision models, alongside a novel interpretability algorithm to address these challenges.
arXiv Detail & Related papers (2024-06-14T13:41:21Z) - Hyperspectral unmixing for Raman spectroscopy via physics-constrained
autoencoders [0.565395466029518]
We develop hyperspectral unmixing algorithms based on autoencoder neural networks.
Our results demonstrate that unmixing autoencoders provide improved accuracy, robustness and efficiency compared to standard unmixing methods.
arXiv Detail & Related papers (2024-03-07T14:27:08Z) - Stoichiometry Representation Learning with Polymorphic Crystal
Structures [54.65985356122883]
Stoichiometry descriptors can reveal the ratio between elements involved to form a certain compound without any structural information.
We propose PolySRL, which learns the probabilistic representation of stoichiometry by utilizing the readily available structural information.
arXiv Detail & Related papers (2023-11-17T20:34:28Z) - Probabilistic Phase Labeling and Lattice Refinement for Autonomous
Material Research [20.78180998995325]
We present CrystalShift, an efficient algorithm for probabilistic XRD phase labeling.
We demonstrate that CrystalShift provides robust probability, outperforming existing methods on synthetic and experimental datasets.
In addition to efficient phase-mapping, CrystalShift offers quantitative insights into materials' structural parameters, which facilitate expert evaluation and AI-based modeling of the phase space.
arXiv Detail & Related papers (2023-08-15T17:38:38Z) - ChemVise: Maximizing Out-of-Distribution Chemical Detection with the
Novel Application of Zero-Shot Learning [60.02503434201552]
This research proposes learning approximations of complex exposures from training sets of simple ones.
We demonstrate this approach to synthetic sensor responses surprisingly improves the detection of out-of-distribution obscured chemical analytes.
arXiv Detail & Related papers (2023-02-09T20:19:57Z) - Exploring Supervised Machine Learning for Multi-Phase Identification and
Quantification from Powder X-Ray Diffraction Spectra [1.0660480034605242]
Powder X-ray diffraction analysis is a critical component of materials characterization methodologies.
Deep learning has become a prime focus for predicting crystallographic parameters and features from X-ray spectra.
Here, we are interested in conventional supervised learning algorithms in lieu of deep learning for multi-label crystalline phase identification.
arXiv Detail & Related papers (2022-11-16T00:36:13Z) - Tracking perovskite crystallization via deep learning-based feature
detection on 2D X-ray scattering data [137.47124933818066]
We propose an automated pipeline for the analysis of X-ray diffraction images based on the Faster R-CNN deep learning architecture.
We demonstrate our method on real-time tracking of organic-inorganic perovskite structure crystallization and test it on two applications.
arXiv Detail & Related papers (2022-02-22T15:39:00Z) - Unsupervised Machine Learning for Exploratory Data Analysis of Exoplanet
Transmission Spectra [68.8204255655161]
We focus on unsupervised techniques for analyzing spectral data from transiting exoplanets.
We show that there is a high degree of correlation in the spectral data, which calls for appropriate low-dimensional representations.
We uncover interesting structures in the principal component basis, namely, well-defined branches corresponding to different chemical regimes.
arXiv Detail & Related papers (2022-01-07T22:26:33Z) - Subspace modeling for fast and high-sensitivity X-ray chemical imaging [4.062272647963248]
The TXM-XANES imaging technique has been an emerging tool which operates by acquiring a series of microscopy images with multi-energy X-rays and fitting to obtain the chemical map.
We introduce a simple and robust denoising approach to improve the image quality, which enables fast and high-sensitivity chemical imaging.
arXiv Detail & Related papers (2022-01-01T23:26:06Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.