Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones
- URL: http://arxiv.org/abs/2201.01230v1
- Date: Mon, 3 Jan 2022 16:49:33 GMT
- Title: Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones
- Authors: Zhe Zhang, Shiyao Ma, Zhaohui Yang, Zehui Xiong, Jiawen Kang, Yi Wu,
Kejia Zhang and Dusit Niyato
- Abstract summary: We present a Semi-supervised Federated Learning (SSFL) framework for privacy-preserving UAV image recognition.
There are significant differences in the number, features, and distribution of local data collected by UAVs using different camera modules.
We propose an aggregation rule based on the frequency of the client's participation in training, namely the FedFreq aggregation rule.
- Score: 57.468730437381076
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Air access networks have been recognized as a significant driver of various
Internet of Things (IoT) services and applications. In particular, the aerial
computing network infrastructure centered on the Internet of Drones has set off
a new revolution in automatic image recognition. This emerging technology
relies on sharing ground truth labeled data between Unmanned Aerial Vehicle
(UAV) swarms to train a high-quality automatic image recognition model.
However, such an approach will bring data privacy and data availability
challenges. To address these issues, we first present a Semi-supervised
Federated Learning (SSFL) framework for privacy-preserving UAV image
recognition. Specifically, we propose model parameters mixing strategy to
improve the naive combination of FL and semi-supervised learning methods under
two realistic scenarios (labels-at-client and labels-at-server), which is
referred to as Federated Mixing (FedMix). Furthermore, there are significant
differences in the number, features, and distribution of local data collected
by UAVs using different camera modules in different environments, i.e.,
statistical heterogeneity. To alleviate the statistical heterogeneity problem,
we propose an aggregation rule based on the frequency of the client's
participation in training, namely the FedFreq aggregation rule, which can
adjust the weight of the corresponding local model according to its frequency.
Numerical results demonstrate that the performance of our proposed method is
significantly better than those of the current baseline and is robust to
different non-IID levels of client data.
Related papers
- Mobility-Aware Federated Self-supervised Learning in Vehicular Network [8.30695698868618]
Federated Learning (FL) is an advanced distributed machine learning approach.
It protects the privacy of each vehicle by allowing the model to be trained on multiple devices simultaneously without the need to upload all data to a road side unit (RSU)
This paper proposes a FL algorithm based on image blur level to aggregation, called FLSimCo, which does not require labels and serves as a pre-training stage for self-supervised learning in the vehicular environment.
arXiv Detail & Related papers (2024-08-01T03:28:10Z) - CDFL: Efficient Federated Human Activity Recognition using Contrastive Learning and Deep Clustering [12.472038137777474]
Human Activity Recognition (HAR) is vital for the automation and intelligent identification of human actions through data from diverse sensors.
Traditional machine learning approaches by aggregating data on a central server and centralized processing are memory-intensive and raise privacy concerns.
This work proposes CDFL, an efficient federated learning framework for image-based HAR.
arXiv Detail & Related papers (2024-07-17T03:17:53Z) - Federated Learning for Misbehaviour Detection with Variational Autoencoders and Gaussian Mixture Models [0.2999888908665658]
Federated Learning (FL) has become an attractive approach to collaboratively train Machine Learning (ML) models.
This work proposes a novel unsupervised FL approach for the identification of potential misbehavior in vehicular environments.
We leverage the computing capabilities of public cloud services for model aggregation purposes.
arXiv Detail & Related papers (2024-05-16T08:49:50Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH(Federated Learning Across Simultaneous Heterogeneities) is a lightweight and flexible client selection algorithm.
It outperforms state-of-the-art FL frameworks under extensive sources of Heterogeneities.
It achieves substantial and consistent improvements over state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-13T20:04:39Z) - Benchmarking FedAvg and FedCurv for Image Classification Tasks [1.376408511310322]
This paper focuses on the problem of statistical heterogeneity of the data in the same federated network.
Several Federated Learning algorithms, such as FedAvg, FedProx and Federated Curvature (FedCurv) have already been proposed.
As a side product of this work, we release the non-IID version of the datasets we used so to facilitate further comparisons from the FL community.
arXiv Detail & Related papers (2023-03-31T10:13:01Z) - AutoFed: Heterogeneity-Aware Federated Multimodal Learning for Robust
Autonomous Driving [15.486799633600423]
AutoFed is a framework to fully exploit multimodal sensory data on autonomous vehicles.
We propose a novel model leveraging pseudo-labeling to avoid mistakenly treating unlabeled objects as the background.
We also propose an autoencoder-based data imputation method to fill missing data modality.
arXiv Detail & Related papers (2023-02-17T01:31:53Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
In domains where data are sensitive or private, there is great value in methods that can learn in a distributed manner without the data ever leaving the local devices.
We propose Weight Anonymized Factorization for Federated Learning (WAFFLe), an approach that combines the Indian Buffet Process with a shared dictionary of weight factors for neural networks.
arXiv Detail & Related papers (2020-08-13T04:26:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.