AutoFed: Heterogeneity-Aware Federated Multimodal Learning for Robust
Autonomous Driving
- URL: http://arxiv.org/abs/2302.08646v3
- Date: Thu, 30 Mar 2023 16:10:25 GMT
- Title: AutoFed: Heterogeneity-Aware Federated Multimodal Learning for Robust
Autonomous Driving
- Authors: Tianyue Zheng, Ang Li, Zhe Chen, Hongbo Wang, and Jun Luo
- Abstract summary: AutoFed is a framework to fully exploit multimodal sensory data on autonomous vehicles.
We propose a novel model leveraging pseudo-labeling to avoid mistakenly treating unlabeled objects as the background.
We also propose an autoencoder-based data imputation method to fill missing data modality.
- Score: 15.486799633600423
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Object detection with on-board sensors (e.g., lidar, radar, and camera) play
a crucial role in autonomous driving (AD), and these sensors complement each
other in modalities. While crowdsensing may potentially exploit these sensors
(of huge quantity) to derive more comprehensive knowledge, \textit{federated
learning} (FL) appears to be the necessary tool to reach this potential: it
enables autonomous vehicles (AVs) to train machine learning models without
explicitly sharing raw sensory data. However, the multimodal sensors introduce
various data heterogeneity across distributed AVs (e.g., label quantity skews
and varied modalities), posing critical challenges to effective FL. To this
end, we present AutoFed as a heterogeneity-aware FL framework to fully exploit
multimodal sensory data on AVs and thus enable robust AD. Specifically, we
first propose a novel model leveraging pseudo-labeling to avoid mistakenly
treating unlabeled objects as the background. We also propose an
autoencoder-based data imputation method to fill missing data modality (of
certain AVs) with the available ones. To further reconcile the heterogeneity,
we finally present a client selection mechanism exploiting the similarities
among client models to improve both training stability and convergence rate.
Our experiments on benchmark dataset confirm that AutoFed substantially
improves over status quo approaches in both precision and recall, while
demonstrating strong robustness to adverse weather conditions.
Related papers
- Graph-Based Multi-Modal Sensor Fusion for Autonomous Driving [3.770103075126785]
We introduce a novel approach to multi-modal sensor fusion, focusing on developing a graph-based state representation.
We present a Sensor-Agnostic Graph-Aware Kalman Filter, the first online state estimation technique designed to fuse multi-modal graphs.
We validate the effectiveness of our proposed framework through extensive experiments conducted on both synthetic and real-world driving datasets.
arXiv Detail & Related papers (2024-11-06T06:58:17Z) - XAI-based Feature Ensemble for Enhanced Anomaly Detection in Autonomous Driving Systems [1.3022753212679383]
This paper proposes a novel feature ensemble framework that integrates multiple Explainable AI (XAI) methods.
By fusing top features identified by these XAI methods across six diverse AI models, the framework creates a robust and comprehensive set of features critical for detecting anomalies.
Our technique demonstrates improved accuracy, robustness, and transparency of AI models, contributing to safer and more trustworthy autonomous driving systems.
arXiv Detail & Related papers (2024-10-20T14:34:48Z) - Condition-Aware Multimodal Fusion for Robust Semantic Perception of Driving Scenes [56.52618054240197]
We propose a novel, condition-aware multimodal fusion approach for robust semantic perception of driving scenes.
Our method, CAFuser, uses an RGB camera input to classify environmental conditions and generate a Condition Token that guides the fusion of multiple sensor modalities.
We set the new state of the art with CAFuser on the MUSES dataset with 59.7 PQ for multimodal panoptic segmentation and 78.2 mIoU for semantic segmentation, ranking first on the public benchmarks.
arXiv Detail & Related papers (2024-10-14T17:56:20Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
We propose an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios.
We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
arXiv Detail & Related papers (2024-03-26T04:27:56Z) - Reason2Drive: Towards Interpretable and Chain-based Reasoning for Autonomous Driving [38.28159034562901]
Reason2Drive is a benchmark dataset with over 600K video-text pairs.
We characterize the autonomous driving process as a sequential combination of perception, prediction, and reasoning steps.
We introduce a novel aggregated evaluation metric to assess chain-based reasoning performance in autonomous systems.
arXiv Detail & Related papers (2023-12-06T18:32:33Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - SHIFT: A Synthetic Driving Dataset for Continuous Multi-Task Domain
Adaptation [152.60469768559878]
SHIFT is the largest multi-task synthetic dataset for autonomous driving.
It presents discrete and continuous shifts in cloudiness, rain and fog intensity, time of day, and vehicle and pedestrian density.
Our dataset and benchmark toolkit are publicly available at www.vis.xyz/shift.
arXiv Detail & Related papers (2022-06-16T17:59:52Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
We present a Semi-supervised Federated Learning (SSFL) framework for privacy-preserving UAV image recognition.
There are significant differences in the number, features, and distribution of local data collected by UAVs using different camera modules.
We propose an aggregation rule based on the frequency of the client's participation in training, namely the FedFreq aggregation rule.
arXiv Detail & Related papers (2022-01-03T16:49:33Z) - High-Precision Digital Traffic Recording with Multi-LiDAR Infrastructure
Sensor Setups [0.0]
We investigate the impact of fused LiDAR point clouds compared to single LiDAR point clouds.
The evaluation of the extracted trajectories shows that a fused infrastructure approach significantly increases the tracking results and reaches accuracies within a few centimeters.
arXiv Detail & Related papers (2020-06-22T10:57:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.