Debiased Learning from Naturally Imbalanced Pseudo-Labels for Zero-Shot
and Semi-Supervised Learning
- URL: http://arxiv.org/abs/2201.01490v1
- Date: Wed, 5 Jan 2022 07:40:24 GMT
- Title: Debiased Learning from Naturally Imbalanced Pseudo-Labels for Zero-Shot
and Semi-Supervised Learning
- Authors: Xudong Wang, Zhirong Wu, Long Lian, Stella X. Yu
- Abstract summary: This work studies the bias issue of pseudo-labeling, a natural phenomenon that widely occurs but often overlooked by prior research.
We observe heavy long-tailed pseudo-labels when a semi-supervised learning model FixMatch predicts labels on the unlabeled set even though the unlabeled data is curated to be balanced.
Without intervention, the training model inherits the bias from the pseudo-labels and end up being sub-optimal.
- Score: 27.770473405635585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work studies the bias issue of pseudo-labeling, a natural phenomenon
that widely occurs but often overlooked by prior research. Pseudo-labels are
generated when a classifier trained on source data is transferred to unlabeled
target data. We observe heavy long-tailed pseudo-labels when a semi-supervised
learning model FixMatch predicts labels on the unlabeled set even though the
unlabeled data is curated to be balanced. Without intervention, the training
model inherits the bias from the pseudo-labels and end up being sub-optimal. To
eliminate the model bias, we propose a simple yet effective method DebiasMatch,
comprising of an adaptive debiasing module and an adaptive marginal loss. The
strength of debiasing and the size of margins can be automatically adjusted by
making use of an online updated queue. Benchmarked on ImageNet-1K, DebiasMatch
significantly outperforms previous state-of-the-arts by more than 26% and 8.7%
on semi-supervised learning (0.2% annotated data) and zero-shot learning tasks
respectively.
Related papers
- Towards the Mitigation of Confirmation Bias in Semi-supervised Learning: a Debiased Training Perspective [6.164100243945264]
Semi-supervised learning (SSL) commonly exhibits confirmation bias, where models disproportionately favor certain classes.
We introduce TaMatch, a unified framework for debiased training in SSL.
We show that TaMatch significantly outperforms existing state-of-the-art methods across a range of challenging image classification tasks.
arXiv Detail & Related papers (2024-09-26T21:50:30Z) - Boosting Semi-Supervised Learning by bridging high and low-confidence
predictions [4.18804572788063]
Pseudo-labeling is a crucial technique in semi-supervised learning (SSL)
We propose a new method called ReFixMatch, which aims to utilize all of the unlabeled data during training.
arXiv Detail & Related papers (2023-08-15T00:27:18Z) - Dist-PU: Positive-Unlabeled Learning from a Label Distribution
Perspective [89.5370481649529]
We propose a label distribution perspective for PU learning in this paper.
Motivated by this, we propose to pursue the label distribution consistency between predicted and ground-truth label distributions.
Experiments on three benchmark datasets validate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-12-06T07:38:29Z) - Learning to Adapt Classifier for Imbalanced Semi-supervised Learning [38.434729550279116]
Pseudo-labeling has proven to be a promising semi-supervised learning (SSL) paradigm.
Existing pseudo-labeling methods commonly assume that the class distributions of training data are balanced.
In this work, we investigate pseudo-labeling under imbalanced semi-supervised setups.
arXiv Detail & Related papers (2022-07-28T02:15:47Z) - FreeMatch: Self-adaptive Thresholding for Semi-supervised Learning [46.95063831057502]
We propose emphFreeMatch to define and adjust the confidence threshold in a self-adaptive manner according to the model's learning status.
FreeMatch achieves textbf5.78%, textbf13.59%, and textbf1.28% error rate reduction over the latest state-of-the-art method FlexMatch on CIFAR-10 with 1 label per class.
arXiv Detail & Related papers (2022-05-15T10:07:52Z) - Debiased Pseudo Labeling in Self-Training [77.83549261035277]
Deep neural networks achieve remarkable performances on a wide range of tasks with the aid of large-scale labeled datasets.
To mitigate the requirement for labeled data, self-training is widely used in both academia and industry by pseudo labeling on readily-available unlabeled data.
We propose Debiased, in which the generation and utilization of pseudo labels are decoupled by two independent heads.
arXiv Detail & Related papers (2022-02-15T02:14:33Z) - Improving Contrastive Learning on Imbalanced Seed Data via Open-World
Sampling [96.8742582581744]
We present an open-world unlabeled data sampling framework called Model-Aware K-center (MAK)
MAK follows three simple principles: tailness, proximity, and diversity.
We demonstrate that MAK can consistently improve both the overall representation quality and the class balancedness of the learned features.
arXiv Detail & Related papers (2021-11-01T15:09:41Z) - Distribution-Aware Semantics-Oriented Pseudo-label for Imbalanced
Semi-Supervised Learning [80.05441565830726]
This paper addresses imbalanced semi-supervised learning, where heavily biased pseudo-labels can harm the model performance.
We propose a general pseudo-labeling framework to address the bias motivated by this observation.
We term the novel pseudo-labeling framework for imbalanced SSL as Distribution-Aware Semantics-Oriented (DASO) Pseudo-label.
arXiv Detail & Related papers (2021-06-10T11:58:25Z) - Disentangling Sampling and Labeling Bias for Learning in Large-Output
Spaces [64.23172847182109]
We show that different negative sampling schemes implicitly trade-off performance on dominant versus rare labels.
We provide a unified means to explicitly tackle both sampling bias, arising from working with a subset of all labels, and labeling bias, which is inherent to the data due to label imbalance.
arXiv Detail & Related papers (2021-05-12T15:40:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.