Learning True Rate-Distortion-Optimization for End-To-End Image
Compression
- URL: http://arxiv.org/abs/2201.01586v1
- Date: Wed, 5 Jan 2022 13:02:00 GMT
- Title: Learning True Rate-Distortion-Optimization for End-To-End Image
Compression
- Authors: Fabian Brand, Kristian Fischer, Alexander Kopte, Andr\'e Kaup
- Abstract summary: Rate-distortion optimization is crucial part of traditional image and video compression.
In this paper, we enhance the training by introducing low-complexity estimations of the RDO result into the training.
We achieve average rate savings of 19.6% in MS-SSIM over the previous RDONet model, which equals rate savings of 27.3% over a comparable conventional deep image coder.
- Score: 59.816251613869376
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Even though rate-distortion optimization is a crucial part of traditional
image and video compression, not many approaches exist which transfer this
concept to end-to-end-trained image compression. Most frameworks contain static
compression and decompression models which are fixed after training, so
efficient rate-distortion optimization is not possible. In a previous work, we
proposed RDONet, which enables an RDO approach comparable to adaptive block
partitioning in HEVC. In this paper, we enhance the training by introducing
low-complexity estimations of the RDO result into the training. Additionally,
we propose fast and very fast RDO inference modes. With our novel training
method, we achieve average rate savings of 19.6% in MS-SSIM over the previous
RDONet model, which equals rate savings of 27.3% over a comparable conventional
deep image coder.
Related papers
- Learning Efficient and Effective Trajectories for Differential Equation-based Image Restoration [59.744840744491945]
We reformulate the trajectory optimization of this kind of method, focusing on enhancing both reconstruction quality and efficiency.
We propose cost-aware trajectory distillation to streamline complex paths into several manageable steps with adaptable sizes.
Experiments showcase the significant superiority of the proposed method, achieving a maximum PSNR improvement of 2.1 dB over state-of-the-art methods.
arXiv Detail & Related papers (2024-10-07T07:46:08Z) - Frequency-Aware Re-Parameterization for Over-Fitting Based Image
Compression [12.725194101094711]
Over-fitting-based image compression requires weights compactness for compression and fast convergence for practical use.
This paper presents a simple re- parameterization method to train CNNs with reduced weights storage and accelerated convergence.
The proposed method is verified with extensive experiments of over-fitting-based image restoration on various datasets, achieving up to -46.12% BD-rate on top of HEIF with only 200 iterations.
arXiv Detail & Related papers (2023-10-12T06:32:12Z) - Efficient Contextformer: Spatio-Channel Window Attention for Fast
Context Modeling in Learned Image Compression [1.9249287163937978]
We introduce the Efficient Contextformer (eContextformer) - a transformer-based autoregressive context model for learned image.
It fuses patch-wise, checkered, and channel-wise grouping techniques for parallel context modeling.
It achieves 145x lower model complexity and 210Cx faster decoding speed, and higher average bit savings on Kodak, CLI, and Tecnick datasets.
arXiv Detail & Related papers (2023-06-25T16:29:51Z) - Efficient Diffusion Training via Min-SNR Weighting Strategy [78.5801305960993]
We treat the diffusion training as a multi-task learning problem and introduce a simple yet effective approach referred to as Min-SNR-$gamma$.
Our results demonstrate a significant improvement in converging speed, 3.4$times$ faster than previous weighting strategies.
It is also more effective, achieving a new record FID score of 2.06 on the ImageNet $256times256$ benchmark using smaller architectures than that employed in previous state-of-the-art.
arXiv Detail & Related papers (2023-03-16T17:59:56Z) - Learned Image Compression with Generalized Octave Convolution and
Cross-Resolution Parameter Estimation [5.238765582868391]
We propose a learned multi-resolution image compression framework, which exploits octave convolutions to factorize the latent representations into the high-resolution (HR) and low-resolution (LR) parts.
Experimental results show that our method separately reduces the decoding time by approximately 73.35 % and 93.44 % compared with that of state-of-the-art learned image compression methods.
arXiv Detail & Related papers (2022-09-07T08:21:52Z) - Reducing The Amortization Gap of Entropy Bottleneck In End-to-End Image
Compression [2.1485350418225244]
End-to-end deep trainable models are about to exceed the performance of the traditional handcrafted compression techniques on videos and images.
We propose a simple yet efficient instance-based parameterization method to reduce this amortization gap at a minor cost.
arXiv Detail & Related papers (2022-09-02T11:43:45Z) - An Empirical Analysis of Recurrent Learning Algorithms In Neural Lossy
Image Compression Systems [73.48927855855219]
Recent advances in deep learning have resulted in image compression algorithms that outperform JPEG and JPEG 2000 on the standard Kodak benchmark.
In this paper, we perform the first large-scale comparison of recent state-of-the-art hybrid neural compression algorithms.
arXiv Detail & Related papers (2022-01-27T19:47:51Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Channel-wise Autoregressive Entropy Models for Learned Image Compression [8.486483425885291]
In learning-based approaches to image compression, codecs are developed by optimizing a computational model to minimize a rate-distortion objective.
We introduce two enhancements, channel-conditioning and latent residual prediction, that lead to network architectures with better rate-distortion performance.
At low bit rates, where the improvements are most effective, our model saves up to 18% over the baseline and outperforms hand-engineered codecs like BPG by up to 25%.
arXiv Detail & Related papers (2020-07-17T03:33:53Z) - Learning End-to-End Lossy Image Compression: A Benchmark [90.35363142246806]
We first conduct a comprehensive literature survey of learned image compression methods.
We describe milestones in cutting-edge learned image-compression methods, review a broad range of existing works, and provide insights into their historical development routes.
By introducing a coarse-to-fine hyperprior model for entropy estimation and signal reconstruction, we achieve improved rate-distortion performance.
arXiv Detail & Related papers (2020-02-10T13:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.