Learning Efficient and Effective Trajectories for Differential Equation-based Image Restoration
- URL: http://arxiv.org/abs/2410.04811v1
- Date: Mon, 7 Oct 2024 07:46:08 GMT
- Title: Learning Efficient and Effective Trajectories for Differential Equation-based Image Restoration
- Authors: Zhiyu Zhu, Jinhui Hou, Hui Liu, Huanqiang Zeng, Junhui Hou,
- Abstract summary: We reformulate the trajectory optimization of this kind of method, focusing on enhancing both reconstruction quality and efficiency.
We propose cost-aware trajectory distillation to streamline complex paths into several manageable steps with adaptable sizes.
Experiments showcase the significant superiority of the proposed method, achieving a maximum PSNR improvement of 2.1 dB over state-of-the-art methods.
- Score: 59.744840744491945
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The differential equation-based image restoration approach aims to establish learnable trajectories connecting high-quality images to a tractable distribution, e.g., low-quality images or a Gaussian distribution. In this paper, we reformulate the trajectory optimization of this kind of method, focusing on enhancing both reconstruction quality and efficiency. Initially, we navigate effective restoration paths through a reinforcement learning process, gradually steering potential trajectories toward the most precise options. Additionally, to mitigate the considerable computational burden associated with iterative sampling, we propose cost-aware trajectory distillation to streamline complex paths into several manageable steps with adaptable sizes. Moreover, we fine-tune a foundational diffusion model (FLUX) with 12B parameters by using our algorithms, producing a unified framework for handling 7 kinds of image restoration tasks. Extensive experiments showcase the significant superiority of the proposed method, achieving a maximum PSNR improvement of 2.1 dB over state-of-the-art methods, while also greatly enhancing visual perceptual quality. Project page: \url{https://zhu-zhiyu.github.io/FLUX-IR/}.
Related papers
- Realistic Extreme Image Rescaling via Generative Latent Space Learning [51.85790402171696]
We propose a novel framework called Latent Space Based Image Rescaling (LSBIR) for extreme image rescaling tasks.
LSBIR effectively leverages powerful natural image priors learned by a pre-trained text-to-image diffusion model to generate realistic HR images.
In the first stage, a pseudo-invertible encoder-decoder models the bidirectional mapping between the latent features of the HR image and the target-sized LR image.
In the second stage, the reconstructed features from the first stage are refined by a pre-trained diffusion model to generate more faithful and visually pleasing details.
arXiv Detail & Related papers (2024-08-17T09:51:42Z) - Mitigating Data Consistency Induced Discrepancy in Cascaded Diffusion Models for Sparse-view CT Reconstruction [4.227116189483428]
This study introduces a novel Cascaded Diffusion with Discrepancy Mitigation framework.
It includes the low-quality image generation in latent space and the high-quality image generation in pixel space.
It minimizes computational costs by moving some inference steps from pixel space to latent space.
arXiv Detail & Related papers (2024-03-14T12:58:28Z) - Efficient Diffusion Model for Image Restoration by Residual Shifting [63.02725947015132]
This study proposes a novel and efficient diffusion model for image restoration.
Our method avoids the need for post-acceleration during inference, thereby avoiding the associated performance deterioration.
Our method achieves superior or comparable performance to current state-of-the-art methods on three classical IR tasks.
arXiv Detail & Related papers (2024-03-12T05:06:07Z) - Adaptive Image Registration: A Hybrid Approach Integrating Deep Learning
and Optimization Functions for Enhanced Precision [13.242184146186974]
We propose a single framework for image registration based on deep neural networks and optimization.
We show improvements of up to 1.6% in test data, while maintaining the same inference time, and a substantial 1.0% points performance gain in deformation field smoothness.
arXiv Detail & Related papers (2023-11-27T02:48:06Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
Diffusion model-based image restoration (IR) aims to use diffusion models to recover high-quality (HQ) images from degraded images, achieving promising performance.
Most existing methods need long serial sampling chains to restore HQ images step-by-step, resulting in expensive sampling time and high computation costs.
In this work, we aim to rethink the diffusion model-based IR models through a different perspective, i.e., a deep equilibrium (DEQ) fixed point system, called DeqIR.
arXiv Detail & Related papers (2023-11-20T08:27:56Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Self-Supervised Coordinate Projection Network for Sparse-View Computed
Tomography [31.774432128324385]
We propose a Self-supervised COordinate Projection nEtwork (SCOPE) to reconstruct the artifacts-free CT image from a single SV sinogram.
Compared with recent related works that solve similar problems using implicit neural representation network (INR), our essential contribution is an effective and simple re-projection strategy.
arXiv Detail & Related papers (2022-09-12T06:14:04Z) - DeepRLS: A Recurrent Network Architecture with Least Squares Implicit
Layers for Non-blind Image Deconvolution [15.986942312624]
We study the problem of non-blind image deconvolution.
We propose a novel recurrent network architecture that leads to very competitive restoration results of high image quality.
arXiv Detail & Related papers (2021-12-10T13:16:51Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.