NumHTML: Numeric-Oriented Hierarchical Transformer Model for Multi-task
Financial Forecasting
- URL: http://arxiv.org/abs/2201.01770v1
- Date: Wed, 5 Jan 2022 10:17:02 GMT
- Title: NumHTML: Numeric-Oriented Hierarchical Transformer Model for Multi-task
Financial Forecasting
- Authors: Linyi Yang, Jiazheng Li, Ruihai Dong, Yue Zhang, Barry Smyth
- Abstract summary: This paper describes a numeric-oriented hierarchical transformer model to predict stock returns and financial risk using multi-modal aligned earnings calls data.
We present the results of a comprehensive evaluation of Num HTML against several state-of-the-art baselines using a real-world publicly available dataset.
- Score: 17.691653056521904
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Financial forecasting has been an important and active area of machine
learning research because of the challenges it presents and the potential
rewards that even minor improvements in prediction accuracy or forecasting may
entail. Traditionally, financial forecasting has heavily relied on quantitative
indicators and metrics derived from structured financial statements. Earnings
conference call data, including text and audio, is an important source of
unstructured data that has been used for various prediction tasks using deep
earning and related approaches. However, current deep learning-based methods
are limited in the way that they deal with numeric data; numbers are typically
treated as plain-text tokens without taking advantage of their underlying
numeric structure. This paper describes a numeric-oriented hierarchical
transformer model to predict stock returns, and financial risk using
multi-modal aligned earnings calls data by taking advantage of the different
categories of numbers (monetary, temporal, percentages etc.) and their
magnitude. We present the results of a comprehensive evaluation of NumHTML
against several state-of-the-art baselines using a real-world publicly
available dataset. The results indicate that NumHTML significantly outperforms
the current state-of-the-art across a variety of evaluation metrics and that it
has the potential to offer significant financial gains in a practical trading
context.
Related papers
- Quantifying Qualitative Insights: Leveraging LLMs to Market Predict [0.0]
This study addresses challenges by leveraging daily reports from securities firms to create high-quality contextual information.
The reports are segmented into text-based key factors and combined with numerical data, such as price information, to form context sets.
A crafted prompt is designed to assign scores to the key factors, converting qualitative insights into quantitative results.
arXiv Detail & Related papers (2024-11-13T07:45:40Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach [6.112119533910774]
This paper introduces an advanced approach by employing Large Language Models (LLMs) instruction fine-tuned with a novel combination of instruction-based techniques and quantized low-rank adaptation (QLoRA) compression.
Our methodology integrates 'base factors', such as financial metric growth and earnings transcripts, with 'external factors', including recent market indices performances and analyst grades, to create a rich, supervised dataset.
This study not only demonstrates the power of integrating cutting-edge AI with fine-tuned financial data but also paves the way for future research in enhancing AI-driven financial analysis tools.
arXiv Detail & Related papers (2024-08-13T04:53:31Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
We introduce a novel approach to anomaly detection in financial data using Large Language Models (LLMs) embeddings.
Our experiments demonstrate that LLMs contribute valuable information to anomaly detection as our models outperform the baselines.
arXiv Detail & Related papers (2024-06-05T20:19:09Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
We release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data.
We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task.
arXiv Detail & Related papers (2024-03-19T09:45:33Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Financial Distress Prediction For Small And Medium Enterprises Using
Machine Learning Techniques [5.301137510638804]
Financial Distress Prediction plays a crucial role in the economy by accurately forecasting the number and probability of failing structures.
However, predicting financial distress for Small and Medium Enterprises is challenging due to their inherent ambiguity.
We propose a corporate FCP model that better aligns with industry practice and incorporates the gathering of thin-head component analysis of financial data, corporate governance qualities, and market exchange data with a Relevant Vector Machine.
arXiv Detail & Related papers (2023-02-23T15:58:30Z) - Forecasting Cryptocurrency Returns from Sentiment Signals: An Analysis
of BERT Classifiers and Weak Supervision [6.624726878647541]
We introduce weak learning, a recently proposed NLP approach to address the problem that text data is unlabeled.
We confirm that finetuning using weak labels enhances the predictive value of text-based features and raises forecast accuracy in the context of predicting cryptocurrency returns.
More fundamentally, the modeling paradigm we present, weak labeling domain-specific text and finetuning pretrained NLP models, is universally applicable in (financial) forecasting.
arXiv Detail & Related papers (2022-04-06T07:45:05Z) - FinQA: A Dataset of Numerical Reasoning over Financial Data [52.7249610894623]
We focus on answering deep questions over financial data, aiming to automate the analysis of a large corpus of financial documents.
We propose a new large-scale dataset, FinQA, with Question-Answering pairs over Financial reports, written by financial experts.
The results demonstrate that popular, large, pre-trained models fall far short of expert humans in acquiring finance knowledge.
arXiv Detail & Related papers (2021-09-01T00:08:14Z) - Financial Markets Prediction with Deep Learning [11.26482563151052]
We propose a novel one-dimensional convolutional neural networks (CNN) model to predict financial market movement.
The customized one-dimensional convolutional layers scan financial trading data through time, while different types of data, such as prices and volume, share parameters ( Kernels) with each other.
Our model automatically extracts features instead of using traditional technical indicators.
arXiv Detail & Related papers (2021-04-05T19:36:48Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
Multiple time series such as financial indicators, stock prices and exchange rates are strongly coupled due to their dependence on the latent state of the market.
We focus on learning the relationships among financial time series by modelling them through a multi-output Gaussian process.
arXiv Detail & Related papers (2020-02-11T19:18:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.