Context is Key: A Benchmark for Forecasting with Essential Textual Information
- URL: http://arxiv.org/abs/2410.18959v1
- Date: Thu, 24 Oct 2024 17:56:08 GMT
- Title: Context is Key: A Benchmark for Forecasting with Essential Textual Information
- Authors: Andrew Robert Williams, Arjun Ashok, Étienne Marcotte, Valentina Zantedeschi, Jithendaraa Subramanian, Roland Riachi, James Requeima, Alexandre Lacoste, Irina Rish, Nicolas Chapados, Alexandre Drouin,
- Abstract summary: "Context is Key" (CiK) is a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings.
- Score: 87.3175915185287
- License:
- Abstract: Forecasting is a critical task in decision making across various domains. While numerical data provides a foundation, it often lacks crucial context necessary for accurate predictions. Human forecasters frequently rely on additional information, such as background knowledge or constraints, which can be efficiently communicated through natural language. However, the ability of existing forecasting models to effectively integrate this textual information remains an open question. To address this, we introduce "Context is Key" (CiK), a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context, requiring models to integrate both modalities. We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters, and propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark. Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings. By presenting this benchmark, we aim to advance multimodal forecasting, promoting models that are both accurate and accessible to decision-makers with varied technical expertise. The benchmark can be visualized at https://servicenow.github.io/context-is-key-forecasting/v0/ .
Related papers
- PUB: Plot Understanding Benchmark and Dataset for Evaluating Large Language Models on Synthetic Visual Data Interpretation [2.1184929769291294]
This paper presents a novel synthetic dataset designed to evaluate the proficiency of large language models in interpreting data visualizations.
Our dataset is generated using controlled parameters to ensure comprehensive coverage of potential real-world scenarios.
We employ multimodal text prompts with questions related to visual data in images to benchmark several state-of-the-art models.
arXiv Detail & Related papers (2024-09-04T11:19:17Z) - LLM Processes: Numerical Predictive Distributions Conditioned on Natural Language [35.84181171987974]
Our goal is to build a regression model that can process numerical data and make probabilistic predictions at arbitrary locations.
We start by exploring strategies for eliciting explicit, coherent numerical predictive distributions from Large Language Models.
We demonstrate the ability to usefully incorporate text into numerical predictions, improving predictive performance and giving quantitative structure that reflects qualitative descriptions.
arXiv Detail & Related papers (2024-05-21T15:13:12Z) - A Large-Scale Evaluation of Speech Foundation Models [110.95827399522204]
We establish the Speech processing Universal PERformance Benchmark (SUPERB) to study the effectiveness of the foundation model paradigm for speech.
We propose a unified multi-tasking framework to address speech processing tasks in SUPERB using a frozen foundation model followed by task-specialized, lightweight prediction heads.
arXiv Detail & Related papers (2024-04-15T00:03:16Z) - Discourse-Aware In-Context Learning for Temporal Expression Normalization [7.621550020607368]
In this work, we explore the feasibility of proprietary and open-source large language models (LLMs) for TE normalization.
By using a window-based prompt design approach, we can perform TE normalization across sentences, while leveraging the LLM knowledge without training the model.
Our experiments show competitive results to models designed for this task.
arXiv Detail & Related papers (2024-04-11T14:13:44Z) - Generative Context-aware Fine-tuning of Self-supervised Speech Models [54.389711404209415]
We study the use of generative large language models (LLM) generated context information.
We propose an approach to distill the generated information during fine-tuning of self-supervised speech models.
We evaluate the proposed approach using the SLUE and Libri-light benchmarks for several downstream tasks: automatic speech recognition, named entity recognition, and sentiment analysis.
arXiv Detail & Related papers (2023-12-15T15:46:02Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
This paper introduces ASTxplainer, an explainability method specific to Large Language Models for code.
At its core, ASTxplainer provides an automated method for aligning token predictions with AST nodes.
We perform an empirical evaluation on 12 popular LLMs for code using a curated dataset of the most popular GitHub projects.
arXiv Detail & Related papers (2023-08-07T18:50:57Z) - Temporal Knowledge Graph Forecasting Without Knowledge Using In-Context
Learning [23.971206470486468]
We present a framework that converts relevant historical facts into prompts and generates ranked predictions using token probabilities.
Surprisingly, we observe that LLMs, out-of-the-box, perform on par with state-of-the-art TKG models.
We also discover that using numerical indices instead of entity/relation names, does not significantly affect the performance.
arXiv Detail & Related papers (2023-05-17T23:50:28Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - Sorting through the noise: Testing robustness of information processing
in pre-trained language models [5.371816551086117]
This paper examines robustness of models' ability to deploy relevant context information in the face of distracting content.
We find that although models appear in simple contexts to make predictions based on understanding and applying relevant facts from prior context, the presence of distracting but irrelevant content has clear impact in confusing model predictions.
arXiv Detail & Related papers (2021-09-25T16:02:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.