Electrical readout microwave-free sensing with diamond
- URL: http://arxiv.org/abs/2201.01801v1
- Date: Wed, 5 Jan 2022 19:40:10 GMT
- Title: Electrical readout microwave-free sensing with diamond
- Authors: Huijie Zheng, Jaroslav Hruby, Emilie Bourgeois, Josef Soucek, Petr
Siyushev, Fedor Jelezko, Arne Wickenbrock, Milos Nesladek, and Dmitry Budker
- Abstract summary: Photoelectric readout of ground-state cross-relaxation features serves as a method for measuring electron spin resonance spectra of nanoscale electronic environments.
This approach may offer potential solutions for determining spin densities and characterizing local environment.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: While nitrogen-vacancy (NV-) centers have been extensively investigated in
the context of spin-based quantum technologies, the spin-state readout is
conventionally performed optically, which may limit miniaturization and
scalability. Here, we report photoelectric readout of ground-state
cross-relaxation features, which serves as a method for measuring electron spin
resonance spectra of nanoscale electronic environments and also for
microwave-free sensing. As a proof of concept, by systematically tuning NV
centers into resonance with the target electronic system, we extracted the
spectra for the P1 electronic spin bath in diamond. Such detection may enable
probing optically inactive defects and the dynamics of local spin environment.
We also demonstrate a magnetometer based on photoelectric detection of the
ground-state level anticrossings (GSLAC), which exhibits a favorable detection
efficiency as well as magnetic sensitivity. This approach may offer potential
solutions for determining spin densities and characterizing local environment.
Related papers
- Electron Spin Resonance Spectroscopy in a Transmission Electron Microscope [0.0]
integration will facilitate in-situ studies of spin systems and their dynamics, quantum materials, radicals, electrochemical reactions, and radiation damage.
This development marks a significant technological advancement toward microwave-controlled quantum spin studies with a highly controlled electron probe at the nanoscale.
arXiv Detail & Related papers (2024-08-29T12:42:13Z) - Spin Resonance Spectroscopy with an Electron Microscope [0.0]
We propose a pump-probe spin resonance spectroscopy approach, based on microwave pump fields and electron probes.
We investigate how quantum spin systems couple to electron matter waves through their magnetic moments.
This could enable state-selective observation of spin dynamics on the nanoscale and indirect measurement of the environment of the examined spin systems.
arXiv Detail & Related papers (2024-01-12T10:42:47Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Nanodiamonds based optical-fiber quantum probe for magnetic field and
biological sensing [6.643766442180283]
In this work, a miniature optical-fiber quantum probe, configured by chemically-modifying nanodiamonds NV centers, is developed.
The magnetic field detection sensitivity of the probe is significantly enhanced to 0.57 nT/Hz1/2 @ 1Hz, a new record among the fiber magnetometers based on nanodiamonds NV.
arXiv Detail & Related papers (2022-02-24T01:41:13Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Sensing electrochemical signals using a nitrogen-vacancy center in
diamond [0.0]
The Nitrogen-vacancy (NV) center in diamond is an ideal candidate as a nanosensor due to the long coherence time of its electron spin and its optical accessibility.
We show that for a range of concentrations, the electric field generated at the position of the NV center can also be used to estimate the concentration of ions.
arXiv Detail & Related papers (2020-12-12T13:32:08Z) - Cavity quantum electrodynamic readout of a solid-state spin sensor [0.0]
Solid-state spin sensors still lack a universal, high-fidelity readout technique.
We demonstrate high-fidelity, room-temperature readout of an ensemble of nitrogen-vacancy (NV) centers via strong coupling to a dielectric microwave cavity.
Our results pave a clear path to achieve unity readout fidelity of solid-state spin sensors through increased ensemble size, reduced spin-resonance linewidth, or improved cavity quality factor.
arXiv Detail & Related papers (2020-03-02T18:57:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.