GLAN: A Graph-based Linear Assignment Network
- URL: http://arxiv.org/abs/2201.02057v1
- Date: Wed, 5 Jan 2022 13:18:02 GMT
- Title: GLAN: A Graph-based Linear Assignment Network
- Authors: He Liu, Tao Wang, Congyan Lang, Songhe Feng, Yi Jin and Yidong Li
- Abstract summary: We propose a learnable linear assignment solver based on deep graph networks.
The experimental results on a synthetic dataset reveal that our method outperforms state-of-the-art baselines.
We also embed the proposed solver into a popular multi-object tracking (MOT) framework to train the tracker in an end-to-end manner.
- Score: 29.788755291070462
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differentiable solvers for the linear assignment problem (LAP) have attracted
much research attention in recent years, which are usually embedded into
learning frameworks as components. However, previous algorithms, with or
without learning strategies, usually suffer from the degradation of the
optimality with the increment of the problem size. In this paper, we propose a
learnable linear assignment solver based on deep graph networks. Specifically,
we first transform the cost matrix to a bipartite graph and convert the
assignment task to the problem of selecting reliable edges from the constructed
graph. Subsequently, a deep graph network is developed to aggregate and update
the features of nodes and edges. Finally, the network predicts a label for each
edge that indicates the assignment relationship. The experimental results on a
synthetic dataset reveal that our method outperforms state-of-the-art baselines
and achieves consistently high accuracy with the increment of the problem size.
Furthermore, we also embed the proposed solver, in comparison with
state-of-the-art baseline solvers, into a popular multi-object tracking (MOT)
framework to train the tracker in an end-to-end manner. The experimental
results on MOT benchmarks illustrate that the proposed LAP solver improves the
tracker by the largest margin.
Related papers
- Enhanced Expressivity in Graph Neural Networks with Lanczos-Based Linear Constraints [7.605749412696919]
Graph Neural Networks (GNNs) excel in handling graph-structured data but often underperform in link prediction tasks.
We present a novel method to enhance the expressivity of GNNs by embedding induced subgraphs into the graph Laplacian matrix's eigenbasis.
Our method achieves 20x and 10x speedup by only requiring 5% and 10% data from the PubMed and OGBL-Vessel datasets.
arXiv Detail & Related papers (2024-08-22T12:22:00Z) - Amplify Graph Learning for Recommendation via Sparsity Completion [16.32861024767423]
Graph learning models have been widely deployed in collaborative filtering (CF) based recommendation systems.
Due to the issue of data sparsity, the graph structure of the original input lacks potential positive preference edges.
We propose an Amplify Graph Learning framework based on Sparsity Completion (called AGL-SC)
arXiv Detail & Related papers (2024-06-27T08:26:20Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - Symmetry-preserving graph attention network to solve routing problems at
multiple resolutions [1.9304772860080408]
We introduce the first-ever completely equivariant model and training to solve problems.
It is essential to capture the multiscale structure of the input graph.
We propose a Multiresolution scheme in combination with Equi Graph Attention network (mEGAT) architecture.
arXiv Detail & Related papers (2023-10-24T06:22:20Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Learnable Graph Matching: Incorporating Graph Partitioning with Deep
Feature Learning for Multiple Object Tracking [58.30147362745852]
Data association across frames is at the core of Multiple Object Tracking (MOT) task.
Existing methods mostly ignore the context information among tracklets and intra-frame detections.
We propose a novel learnable graph matching method to address these issues.
arXiv Detail & Related papers (2021-03-30T08:58:45Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z) - A Generative Graph Method to Solve the Travelling Salesman Problem [1.552282932199974]
We propose to use the novel Graph Learning Network (GLN), a generative approach, to approximately solve the Travelling Salesman Problem (TSP)
GLN model learns directly the pattern of TSP instances as training dataset, encodes the graph properties, and merge the different node embeddings to output node-to-node an optimal tour.
arXiv Detail & Related papers (2020-07-09T17:23:55Z) - Iterative Deep Graph Learning for Graph Neural Networks: Better and
Robust Node Embeddings [53.58077686470096]
We propose an end-to-end graph learning framework, namely Iterative Deep Graph Learning (IDGL) for jointly and iteratively learning graph structure and graph embedding.
Our experiments show that our proposed IDGL models can consistently outperform or match the state-of-the-art baselines.
arXiv Detail & Related papers (2020-06-21T19:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.