論文の概要: A three-dimensional dual-domain deep network for high-pitch and sparse
helical CT reconstruction
- arxiv url: http://arxiv.org/abs/2201.02309v1
- Date: Fri, 7 Jan 2022 03:26:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-10 15:41:08.373558
- Title: A three-dimensional dual-domain deep network for high-pitch and sparse
helical CT reconstruction
- Title(参考訳): ハイピッチおよびスパースヘリカルct再構成のための3次元デュアルドメイン深層ネットワーク
- Authors: Wei Wang, Xiang-Gen Xia, Chuanjiang He, Zemin Ren and Jian Lu
- Abstract要約: 我々はヘリカルCT再構成のためのKatsevichアルゴリズムのGPU実装を提案する。
本実装では, シングラムを分割し, CT画像のピッチをピッチで再構成する。
この実装をネットワークに埋め込むことにより,高ピッチヘリカルCT再構成のためのエンドツーエンドのディープネットワークを提案する。
- 参考スコア(独自算出の注目度): 13.470588027095264
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a new GPU implementation of the Katsevich algorithm
for helical CT reconstruction. Our implementation divides the sinograms and
reconstructs the CT images pitch by pitch. By utilizing the periodic properties
of the parameters of the Katsevich algorithm, our method only needs to
calculate these parameters once for all the pitches and so has lower GPU-memory
burdens and is very suitable for deep learning. By embedding our implementation
into the network, we propose an end-to-end deep network for the high pitch
helical CT reconstruction with sparse detectors. Since our network utilizes the
features extracted from both sinograms and CT images, it can simultaneously
reduce the streak artifacts caused by the sparsity of sinograms and preserve
fine details in the CT images. Experiments show that our network outperforms
the related methods both in subjective and objective evaluations.
- Abstract(参考訳): 本稿では,ヘリカルct再構成のためのkatsevichアルゴリズムのgpu実装を提案する。
本実装では, シングラムを分割し, CT画像のピッチをピッチで再構成する。
Katsevichアルゴリズムのパラメータの周期的特性を利用することで、これらのパラメータを全てのピッチに対して一度だけ計算する必要があり、GPUメモリの負荷が低く、ディープラーニングに非常に適している。
本実装をネットワークに埋め込むことにより,スパース検出器を用いた高ピッチヘリカルCT再構成のためのエンドツーエンドのディープネットワークを提案する。
本ネットワークは, シングラム画像とCT画像の両方から抽出した特徴を利用するため, シングラムの空隙によるストリークアーティファクトを同時に低減し, CT画像の細部を保存できる。
実験の結果,ネットワークは主観的評価と客観的評価の両方において,関連手法よりも優れていた。
関連論文リスト
- UnWave-Net: Unrolled Wavelet Network for Compton Tomography Image Reconstruction [0.0]
Compton scatter tomography (CST) は従来のCTの代替として興味深いものである。
ディープ・アンローリング・ネットワークはCT画像再構成の可能性を実証している。
UnWave-Netは、新しいウェーブレットベースの再構成ネットワークである。
論文 参考訳(メタデータ) (2024-06-05T16:10:29Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - Generative Modeling in Sinogram Domain for Sparse-view CT Reconstruction [12.932897771104825]
CT検査では投射回数を直感的に減らすことで放射線線量を大幅に減少させることができる。
疎視データを用いた従来のディープラーニング技術では、教師付き方法でネットワークをトレーニングするためにスパースビュー/フルビューCTイメージペアが必要である。
スパース・ビューCT再構成のための非教師なしスコアベース生成モデルについて検討した。
論文 参考訳(メタデータ) (2022-11-25T06:49:18Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
本稿では,スパースビューCBCT再構成のための新規かつ高速な自己教師型ソリューションを提案する。
所望の減衰係数は、3次元空間座標の連続関数として表現され、完全に接続されたディープニューラルネットワークによってパラメータ化される。
ハッシュ符号化を含む学習ベースのエンコーダが採用され、ネットワークが高周波の詳細をキャプチャするのに役立つ。
論文 参考訳(メタデータ) (2022-09-29T04:06:00Z) - A Lightweight Dual-Domain Attention Framework for Sparse-View CT
Reconstruction [6.553233856627479]
我々はCAGANと呼ばれる新しい軽量ネットワークを設計し、並列ビームスパースCTのための二重領域再構成パイプラインを提案する。
Shuffle Blocksの適用により、パフォーマンスを犠牲にすることなく、パラメータを4分の1削減できる。
実験の結果、CAGANはモデルの複雑さとパフォーマンスのバランスが良く、私たちのパイプラインはDD-NetとDuDoNetより優れています。
論文 参考訳(メタデータ) (2022-02-19T14:04:59Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
InDuDoNet+と呼ばれる新しい解釈可能な二重ドメインネットワークを構築し、CT画像の微細な埋め込みを行う。
異なる組織間のCT値を分析し,InDuDoNet+の事前観測ネットワークにマージすることで,その一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-12-23T15:52:37Z) - VolumeFusion: Deep Depth Fusion for 3D Scene Reconstruction [71.83308989022635]
本稿では、ディープニューラルネットワークを用いた従来の2段階フレームワークの複製により、解釈可能性と結果の精度が向上することを提唱する。
ネットワークは,1)深部MVS技術を用いた局所深度マップの局所計算,2)深部マップと画像の特徴を融合させて単一のTSDFボリュームを構築する。
異なる視点から取得した画像間のマッチング性能を改善するために,PosedConvと呼ばれる回転不変な3D畳み込みカーネルを導入する。
論文 参考訳(メタデータ) (2021-08-19T11:33:58Z) - Sparse-View Spectral CT Reconstruction Using Deep Learning [0.283239609744735]
マルチチャネル入力と出力を持つU-Net畳み込みニューラルネットワークアーキテクチャを用いて、スパースビュースペクトルCTデータを高速に再構成する手法を提案する。
我々の手法は実行時に高速であり、内部の畳み込みはチャネル間で共有されるため、計算負荷は第一層と最後の層でのみ増加する。
論文 参考訳(メタデータ) (2020-11-30T14:36:23Z) - Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks [87.50632573601283]
一つのビデオから多視点深度を推定する新しい手法を提案する。
提案手法は,新しいEpipolar Spatio-Temporal Transformer(EST)を用いて時間的コヒーレントな深度推定を行う。
最近のMixture-of-Expertsモデルにインスパイアされた計算コストを削減するため、我々はコンパクトなハイブリッドネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-26T04:04:21Z) - A model-guided deep network for limited-angle computed tomography [28.175533839713847]
まず,CT画像再構成のための変分モデルを提案し,そのモデルをエンドツーエンドのディープネットワークに変換する。
本ネットワークは, シングラムとCT画像の両方に対処し, 不完全データによるアーティファクトを同時に抑制することができる。
論文 参考訳(メタデータ) (2020-08-10T09:42:32Z) - Depth Completion Using a View-constrained Deep Prior [73.21559000917554]
近年の研究では、畳み込みニューラルネットワーク(CNN)の構造が、自然画像に有利な強い先行性をもたらすことが示されている。
この前者はディープ・イメージ・先行 (DIP) と呼ばれ、画像の装飾や塗装といった逆問題において有効な正則化器である。
我々は、DIPの概念を深度画像に拡張し、色画像とノイズと不完全な目標深度マップから、CNNネットワーク構造を先行して復元された深度マップを再構成する。
論文 参考訳(メタデータ) (2020-01-21T21:56:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。