Applications of Signature Methods to Market Anomaly Detection
- URL: http://arxiv.org/abs/2201.02441v1
- Date: Fri, 7 Jan 2022 13:05:43 GMT
- Title: Applications of Signature Methods to Market Anomaly Detection
- Authors: Erdinc Akyildirim, Matteo Gambara, Josef Teichmann, Syang Zhou
- Abstract summary: We present applications of signature or randomized signature as feature extractors for anomaly detection algorithms.
We show a real life application by using transaction data from the cryptocurrency market.
In this case, we are able to identify pump and dump attempts organized on social networks with F1 scores up to 88%.
- Score: 1.911678487931003
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection is the process of identifying abnormal instances or events
in data sets which deviate from the norm significantly. In this study, we
propose a signatures based machine learning algorithm to detect rare or
unexpected items in a given data set of time series type. We present
applications of signature or randomized signature as feature extractors for
anomaly detection algorithms; additionally we provide an easy, representation
theoretic justification for the construction of randomized signatures. Our
first application is based on synthetic data and aims at distinguishing between
real and fake trajectories of stock prices, which are indistinguishable by
visual inspection. We also show a real life application by using transaction
data from the cryptocurrency market. In this case, we are able to identify pump
and dump attempts organized on social networks with F1 scores up to 88% by
means of our unsupervised learning algorithm, thus achieving results that are
close to the state-of-the-art in the field based on supervised learning.
Related papers
- Utilizing GANs for Fraud Detection: Model Training with Synthetic
Transaction Data [0.0]
This paper explores the application of Generative Adversarial Networks (GANs) in fraud detection.
GANs have shown promise in modeling complex data distributions, making them effective tools for anomaly detection.
The study demonstrates the potential of GANs in enhancing transaction security through deep learning techniques.
arXiv Detail & Related papers (2024-02-15T09:48:20Z) - A Critical Review of Common Log Data Sets Used for Evaluation of
Sequence-based Anomaly Detection Techniques [2.5339493426758906]
We analyze six publicly available log data sets with focus on the manifestations of anomalies and simple techniques for their detection.
Our findings suggest that most anomalies are not directly related to sequential manifestations and that advanced detection techniques are not required to achieve high detection rates on these data sets.
arXiv Detail & Related papers (2023-09-06T09:31:17Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
We propose a data-agnostic adversarial detection framework, which induces different responses between normal and adversarial samples to UAPs.
Experimental results show that our method achieves competitive detection performance on various text classification tasks.
arXiv Detail & Related papers (2023-06-27T02:54:07Z) - Pattern Mining for Anomaly Detection in Graphs: Application to Fraud in
Public Procurement [0.0]
In public procurement, several indicators called red flags are used to estimate fraud risk.
These attributes are very often missing in practice, which prohibits red flags.
In this work, we adopt a graph-based method allowing leveraging relations between contracts, to compensate for the missing attributes.
arXiv Detail & Related papers (2023-06-19T11:18:55Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Abuse and Fraud Detection in Streaming Services Using Heuristic-Aware
Machine Learning [0.45880283710344055]
This work presents a fraud and abuse detection framework for streaming services by modeling user streaming behavior.
We study the use of semi-supervised as well as supervised approaches for anomaly detection.
To the best of our knowledge, this is the first paper to use machine learning methods for fraud and abuse detection in real-world scale streaming services.
arXiv Detail & Related papers (2022-03-04T03:57:58Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - A Background-Agnostic Framework with Adversarial Training for Abnormal
Event Detection in Video [120.18562044084678]
Abnormal event detection in video is a complex computer vision problem that has attracted significant attention in recent years.
We propose a background-agnostic framework that learns from training videos containing only normal events.
arXiv Detail & Related papers (2020-08-27T18:39:24Z) - Self-Attentive Classification-Based Anomaly Detection in Unstructured
Logs [59.04636530383049]
We propose Logsy, a classification-based method to learn log representations.
We show an average improvement of 0.25 in the F1 score, compared to the previous methods.
arXiv Detail & Related papers (2020-08-21T07:26:55Z) - Sequential Anomaly Detection using Inverse Reinforcement Learning [23.554584457413483]
We propose an end-to-end framework for sequential anomaly detection using inverse reinforcement learning (IRL)
We use a neural network to represent a reward function. Using a learned reward function, we evaluate whether a new observation from the target agent follows a normal pattern.
The empirical study on publicly available real-world data shows that our proposed method is effective in identifying anomalies.
arXiv Detail & Related papers (2020-04-22T05:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.