論文の概要: A Novel Incremental Learning Driven Instance Segmentation Framework to
Recognize Highly Cluttered Instances of the Contraband Items
- arxiv url: http://arxiv.org/abs/2201.02560v2
- Date: Mon, 10 Jan 2022 13:52:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-11 13:15:41.316011
- Title: A Novel Incremental Learning Driven Instance Segmentation Framework to
Recognize Highly Cluttered Instances of the Contraband Items
- Title(参考訳): インクリメンタル学習駆動型インスタンスセグメンテーションフレームワークによるコントラバンドアイテムの高度に乱雑なインスタンス認識
- Authors: Taimur Hassan and Samet Akcay and Mohammed Bennamoun and Salman Khan
and Naoufel Werghi
- Abstract要約: 本稿では,従来のエンコーダ・デコーダアーキテクチャを拡張して,インスタンス認識セグメンテーションを実現する手法を提案する。
新たな客観的関数は、以前取得した知識を保持することにより、各イテレーションにおけるネットワーク損失を最小限にする。
公開されている2つのX線データセット上での我々のフレームワークの徹底的な評価は、最先端の手法よりも優れていることを示している。
- 参考スコア(独自算出の注目度): 45.39173572825739
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Screening cluttered and occluded contraband items from baggage X-ray scans is
a cumbersome task even for the expert security staff. This paper presents a
novel strategy that extends a conventional encoder-decoder architecture to
perform instance-aware segmentation and extract merged instances of contraband
items without using any additional sub-network or an object detector. The
encoder-decoder network first performs conventional semantic segmentation and
retrieves cluttered baggage items. The model then incrementally evolves during
training to recognize individual instances using significantly reduced training
batches. To avoid catastrophic forgetting, a novel objective function minimizes
the network loss in each iteration by retaining the previously acquired
knowledge while learning new class representations and resolving their complex
structural inter-dependencies through Bayesian inference. A thorough evaluation
of our framework on two publicly available X-ray datasets shows that it
outperforms state-of-the-art methods, especially within the challenging
cluttered scenarios, while achieving an optimal trade-off between detection
accuracy and efficiency.
- Abstract(参考訳): 荷物のX線スキャンから散らばったコントラバンドアイテムをスキャンするのは、専門家のセキュリティスタッフにとっても面倒な作業だ。
本稿では,従来のエンコーダ・デコーダアーキテクチャを拡張してインスタンス認識セグメンテーションを行い,追加のサブネットワークやオブジェクト検出器を使わずにコントラバンドアイテムの統合インスタンスを抽出する手法を提案する。
エンコーダ−デコーダネットワークは、まず従来のセマンティクスセグメンテーションを行い、クラッタ化された荷物を検索する。
モデルはトレーニング中に段階的に進化し、トレーニングバッチを大幅に削減した個々のインスタンスを認識する。
新しい目的関数は、新しいクラス表現を学習し、ベイズ推論によって複雑な構造的相互依存を解消しながら、予め獲得した知識を保持しながら、各イテレーションにおけるネットワーク損失を最小限に抑える。
2つの公開X線データセットに対する我々のフレームワークの徹底的な評価は、検出精度と効率のトレードオフを最適に達成しつつ、特に難解な散在シナリオにおいて最先端の手法よりも優れていることを示している。
関連論文リスト
- SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
大規模なデータセットでトレーニングされたビジョントランスフォーマーモデルは、抽出したパッチトークンにアーティファクトを表示することが多い。
本稿では,小さなデータセットのみを用いて構造欠陥を補正するスムーズなスムーズな正規化を提案する。
論文 参考訳(メタデータ) (2024-07-23T20:34:23Z) - Aligned Unsupervised Pretraining of Object Detectors with Self-training [41.03780087924593]
物体検出器の教師なし事前訓練は、近年、物体検出器訓練の重要な要素となっている。
本稿では、この問題を緩和し、3つの単純かつ重要な要素からなるフレームワークを提案する。
当社の戦略は,スクラッチ(背骨を含む)からの事前トレーニングも可能であり,COCOのような複雑な画像にも適用可能であることを示す。
論文 参考訳(メタデータ) (2023-07-28T17:46:00Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
本稿では,2つの補完学習サブネットワークス間のシナジーを通じて連続的に学習するリハーサルフリーなCILアプローチを提案する。
提案手法は, 精度向上, メモリコスト, トレーニング効率, タスク順序など, 最先端手法と競合する結果が得られる。
論文 参考訳(メタデータ) (2023-06-21T01:43:25Z) - Deepfake Detection via Joint Unsupervised Reconstruction and Supervised
Classification [25.84902508816679]
本稿では,再建作業と分類作業を同時に行うディープフェイク検出手法を提案する。
この方法は、あるタスクによって学習された情報を他のタスクと共有する。
提案手法は,一般的に使用されている3つのデータセットに対して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-11-24T05:44:26Z) - Beyond the Prototype: Divide-and-conquer Proxies for Few-shot
Segmentation [63.910211095033596]
少ないショットのセグメンテーションは、少数の濃密なラベル付けされたサンプルのみを与えられた、目に見えないクラスオブジェクトをセグメンテーションすることを目的としている。
分割・分散の精神において, 単純かつ多目的な枠組みを提案する。
提案手法は、DCP(disvision-and-conquer proxies)と呼ばれるもので、適切な信頼性のある情報の開発を可能にする。
論文 参考訳(メタデータ) (2022-04-21T06:21:14Z) - Learning to Detect Instance-level Salient Objects Using Complementary
Image Labels [55.049347205603304]
本報告では,本問題に対する第1の弱教師付きアプローチを提案する。
本稿では,候補対象の特定にクラス整合性情報を活用するSaliency Detection Branch,オブジェクト境界をデライン化するためにクラス整合性情報を利用するBundary Detection Branch,サブティナイズ情報を用いたCentroid Detection Branchを提案する。
論文 参考訳(メタデータ) (2021-11-19T10:15:22Z) - Joint Inductive and Transductive Learning for Video Object Segmentation [107.32760625159301]
半教師付きオブジェクトセグメンテーションは、第1フレームのマスクだけを与えられたビデオシーケンスで対象オブジェクトをセグメンテーションするタスクである。
過去の最も優れた手法は、マッチングベースの帰納的推論やオンライン帰納的学習を採用していた。
本稿では,トランスダクティブ学習とインダクティブ学習を統合したフレームワークに統合し,それら間の補完を利用して,高精度かつ堅牢なビデオオブジェクトセグメンテーションを提案する。
論文 参考訳(メタデータ) (2021-08-08T16:25:48Z) - Unsupervised Discovery of the Long-Tail in Instance Segmentation Using
Hierarchical Self-Supervision [3.841232411073827]
本稿では,インスタンスセグメンテーションにおける長尾カテゴリの非監視的発見を行う手法を提案する。
我々のモデルは、一般的なカテゴリよりも新しくよりきめ細かなオブジェクトを発見できる。
本モデルでは,LVISにおいて,教師付きおよび部分教師付き手法と比較して,競争力のある定量的結果が得られることを示す。
論文 参考訳(メタデータ) (2021-04-02T22:05:03Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。