A Survey on Face Recognition Systems
- URL: http://arxiv.org/abs/2201.02991v1
- Date: Sun, 9 Jan 2022 11:47:29 GMT
- Title: A Survey on Face Recognition Systems
- Authors: Jash Dalvi, Sanket Bafna, Devansh Bagaria, Shyamal Virnodkar
- Abstract summary: Deep learning has proven to be the most successful at computer vision tasks because of its convolution-based architecture.
Since the advent of deep learning, face recognition technology has had a substantial increase in its accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Face Recognition has proven to be one of the most successful technology and
has impacted heterogeneous domains. Deep learning has proven to be the most
successful at computer vision tasks because of its convolution-based
architecture. Since the advent of deep learning, face recognition technology
has had a substantial increase in its accuracy. In this paper, some of the most
impactful face recognition systems were surveyed. Firstly, the paper gives an
overview of a general face recognition system. Secondly, the survey covers
various network architectures and training losses that have had a substantial
impact. Finally, the paper talks about various databases that are used to
evaluate the capabilities of a face recognition system.
Related papers
- Analysis of Recent Trends in Face Recognition Systems [0.0]
Due to inter-class similarities and intra-class variations, face recognition systems generate false match and false non-match errors respectively.
Recent research focuses on improving the robustness of extracted features and the pre-processing algorithms to enhance recognition accuracy.
arXiv Detail & Related papers (2023-04-23T18:55:45Z) - Robustness Disparities in Face Detection [64.71318433419636]
We present the first of its kind detailed benchmark of face detection systems, specifically examining the robustness to noise of commercial and academic models.
Across all the datasets and systems, we generally find that photos of individuals who are $textitmasculine presenting$, of $textitolder$, of $textitdarker skin type$, or have $textitdim lighting$ are more susceptible to errors than their counterparts in other identities.
arXiv Detail & Related papers (2022-11-29T05:22:47Z) - A Comparative Analysis of the Face Recognition Methods in Video
Surveillance Scenarios [0.0]
This study presents comparative benchmark tables for the state-of-art face recognition methods.
We constructed a video surveillance dataset of face IDs with high age variance, intra-class variance (face make-up, beard, etc.) with native surveillance facial imagery data for evaluation.
On the other hand, this work discovers the best recognition methods for different conditions like non-masked faces, masked faces, and faces with glasses.
arXiv Detail & Related papers (2022-11-05T17:59:18Z) - FACESEC: A Fine-grained Robustness Evaluation Framework for Face
Recognition Systems [49.577302852655144]
FACESEC is a framework for fine-grained robustness evaluation of face recognition systems.
We study five face recognition systems in both closed-set and open-set settings.
We find that accurate knowledge of neural architecture is significantly more important than knowledge of the training data in black-box attacks.
arXiv Detail & Related papers (2021-04-08T23:00:25Z) - Affect Analysis in-the-wild: Valence-Arousal, Expressions, Action Units
and a Unified Framework [83.21732533130846]
The paper focuses on large in-the-wild databases, i.e., Aff-Wild and Aff-Wild2.
It presents the design of two classes of deep neural networks trained with these databases.
A novel multi-task and holistic framework is presented which is able to jointly learn and effectively generalize and perform affect recognition.
arXiv Detail & Related papers (2021-03-29T17:36:20Z) - Impact of Facial Tattoos and Paintings on Face Recognition Systems [14.784088881975897]
We investigate the impact that facial tattoos and paintings have on current face recognition systems.
The impact on these modules was evaluated using state-of-the-art open-source and commercial systems.
Our work is an initial case-study and indicates a need to design algorithms which are robust to the visual changes caused by facial tattoos and paintings.
arXiv Detail & Related papers (2021-03-17T22:38:13Z) - Facial Expressions as a Vulnerability in Face Recognition [73.85525896663371]
This work explores facial expression bias as a security vulnerability of face recognition systems.
We present a comprehensive analysis of how facial expression bias impacts the performance of face recognition technologies.
arXiv Detail & Related papers (2020-11-17T18:12:41Z) - The Elements of End-to-end Deep Face Recognition: A Survey of Recent
Advances [56.432660252331495]
Face recognition is one of the most popular and long-standing topics in computer vision.
Deep face recognition has made remarkable progress and been widely used in many real-world applications.
In this survey article, we present a comprehensive review about the recent advance of each element.
arXiv Detail & Related papers (2020-09-28T13:02:17Z) - Investigating the Impact of Inclusion in Face Recognition Training Data
on Individual Face Identification [93.5538147928669]
We audit ArcFace, a state-of-the-art, open source face recognition system, in a large-scale face identification experiment with more than one million distractor images.
We find a Rank-1 face identification accuracy of 79.71% for individuals present in the model's training data and an accuracy of 75.73% for those not present.
arXiv Detail & Related papers (2020-01-09T15:50:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.