A Comparative Analysis of the Face Recognition Methods in Video
Surveillance Scenarios
- URL: http://arxiv.org/abs/2211.02952v1
- Date: Sat, 5 Nov 2022 17:59:18 GMT
- Title: A Comparative Analysis of the Face Recognition Methods in Video
Surveillance Scenarios
- Authors: Eker Onur, Bal Murat
- Abstract summary: This study presents comparative benchmark tables for the state-of-art face recognition methods.
We constructed a video surveillance dataset of face IDs with high age variance, intra-class variance (face make-up, beard, etc.) with native surveillance facial imagery data for evaluation.
On the other hand, this work discovers the best recognition methods for different conditions like non-masked faces, masked faces, and faces with glasses.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Facial recognition is fundamental for a wide variety of security systems
operating in real-time applications. In video surveillance based face
recognition, face images are typically captured over multiple frames in
uncontrolled conditions; where head pose, illumination, shadowing, motion blur
and focus change over the sequence. We can generalize that the three
fundamental operations involved in the facial recognition tasks: face
detection, face alignment and face recognition. This study presents comparative
benchmark tables for the state-of-art face recognition methods by testing them
with same backbone architecture in order to focus only on the face recognition
solution instead of network architecture. For this purpose, we constructed a
video surveillance dataset of face IDs that has high age variance, intra-class
variance (face make-up, beard, etc.) with native surveillance facial imagery
data for evaluation. On the other hand, this work discovers the best
recognition methods for different conditions like non-masked faces, masked
faces, and faces with glasses.
Related papers
- A Machine Learning-Based Secure Face Verification Scheme and Its Applications to Digital Surveillance [0.9208007322096533]
Most real-world recognition systems ignore the importance of protecting the identity-sensitive facial images that are used for verification.
We use the DeepID2 convolutional neural network to extract the features of a facial image and an EM algorithm to solve the facial verification problem.
We develop three face verification systems for surveillance (or entrance) control of a local community based on three levels of privacy concerns.
arXiv Detail & Related papers (2024-10-29T12:25:00Z) - LAFS: Landmark-based Facial Self-supervised Learning for Face
Recognition [37.4550614524874]
We focus on learning facial representations that can be adapted to train effective face recognition models.
We explore the learning strategy of unlabeled facial images through self-supervised pretraining.
Our method achieves significant improvement over the state-of-the-art on multiple face recognition benchmarks.
arXiv Detail & Related papers (2024-03-13T01:07:55Z) - Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
Face forgery generation technologies generate vivid faces, which have raised public concerns about security and privacy.
Although face forgery detection has successfully distinguished fake faces, recent studies have demonstrated that face forgery detectors are very vulnerable to adversarial examples.
arXiv Detail & Related papers (2023-10-18T14:49:54Z) - Detect Faces Efficiently: A Survey and Evaluations [13.105528567365281]
Many applications including face recognition, facial expression recognition, face tracking and head-pose estimation assume that both the location and the size of faces are known in the image.
Deep learning techniques brought remarkable breakthroughs to face detection along with the price of a considerable increase in computation.
This paper introduces representative deep learning-based methods and presents a deep and thorough analysis in terms of accuracy and efficiency.
arXiv Detail & Related papers (2021-12-03T08:39:40Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
We devise the SynFace with identity mixup (IM) and domain mixup (DM) to mitigate the performance gap.
We also perform a systematically empirical analysis on synthetic face images to provide some insights on how to effectively utilize synthetic data for face recognition.
arXiv Detail & Related papers (2021-08-18T03:41:54Z) - Facial Expressions as a Vulnerability in Face Recognition [73.85525896663371]
This work explores facial expression bias as a security vulnerability of face recognition systems.
We present a comprehensive analysis of how facial expression bias impacts the performance of face recognition technologies.
arXiv Detail & Related papers (2020-11-17T18:12:41Z) - The Elements of End-to-end Deep Face Recognition: A Survey of Recent
Advances [56.432660252331495]
Face recognition is one of the most popular and long-standing topics in computer vision.
Deep face recognition has made remarkable progress and been widely used in many real-world applications.
In this survey article, we present a comprehensive review about the recent advance of each element.
arXiv Detail & Related papers (2020-09-28T13:02:17Z) - Face Super-Resolution Guided by 3D Facial Priors [92.23902886737832]
We propose a novel face super-resolution method that explicitly incorporates 3D facial priors which grasp the sharp facial structures.
Our work is the first to explore 3D morphable knowledge based on the fusion of parametric descriptions of face attributes.
The proposed 3D priors achieve superior face super-resolution results over the state-of-the-arts.
arXiv Detail & Related papers (2020-07-18T15:26:07Z) - Investigating the Impact of Inclusion in Face Recognition Training Data
on Individual Face Identification [93.5538147928669]
We audit ArcFace, a state-of-the-art, open source face recognition system, in a large-scale face identification experiment with more than one million distractor images.
We find a Rank-1 face identification accuracy of 79.71% for individuals present in the model's training data and an accuracy of 75.73% for those not present.
arXiv Detail & Related papers (2020-01-09T15:50:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.