Self-Supervised Feature Learning from Partial Point Clouds via Pose
Disentanglement
- URL: http://arxiv.org/abs/2201.03018v1
- Date: Sun, 9 Jan 2022 14:12:50 GMT
- Title: Self-Supervised Feature Learning from Partial Point Clouds via Pose
Disentanglement
- Authors: Meng-Shiun Tsai, Pei-Ze Chiang, Yi-Hsuan Tsai, Wei-Chen Chiu
- Abstract summary: We propose a novel self-supervised framework to learn informative representations from partial point clouds.
We leverage partial point clouds scanned by LiDAR that contain both content and pose attributes.
Our method not only outperforms existing self-supervised methods, but also shows a better generalizability across synthetic and real-world datasets.
- Score: 35.404285596482175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised learning on point clouds has gained a lot of attention
recently, since it addresses the label-efficiency and domain-gap problems on
point cloud tasks. In this paper, we propose a novel self-supervised framework
to learn informative representations from partial point clouds. We leverage
partial point clouds scanned by LiDAR that contain both content and pose
attributes, and we show that disentangling such two factors from partial point
clouds enhances feature representation learning. To this end, our framework
consists of three main parts: 1) a completion network to capture holistic
semantics of point clouds; 2) a pose regression network to understand the
viewing angle where partial data is scanned from; 3) a partial reconstruction
network to encourage the model to learn content and pose features. To
demonstrate the robustness of the learnt feature representations, we conduct
several downstream tasks including classification, part segmentation, and
registration, with comparisons against state-of-the-art methods. Our method not
only outperforms existing self-supervised methods, but also shows a better
generalizability across synthetic and real-world datasets.
Related papers
- Unsupervised Non-Rigid Point Cloud Matching through Large Vision Models [1.3030624795284795]
We propose a learning-based framework for non-rigid point cloud matching.
Key insight is to incorporate semantic features derived from large vision models (LVMs)
Our framework effectively leverages the structural information contained in the semantic features to address ambiguities arise from self-similarities among local geometries.
arXiv Detail & Related papers (2024-08-16T07:02:19Z) - HVDistill: Transferring Knowledge from Images to Point Clouds via Unsupervised Hybrid-View Distillation [106.09886920774002]
We present a hybrid-view-based knowledge distillation framework, termed HVDistill, to guide the feature learning of a point cloud neural network.
Our method achieves consistent improvements over the baseline trained from scratch and significantly out- performs the existing schemes.
arXiv Detail & Related papers (2024-03-18T14:18:08Z) - Cross-Modal Information-Guided Network using Contrastive Learning for
Point Cloud Registration [17.420425069785946]
We present a novel Cross-Modal Information-Guided Network (CMIGNet) for point cloud registration.
We first incorporate the projected images from the point clouds and fuse the cross-modal features using the attention mechanism.
We employ two contrastive learning strategies, namely overlapping contrastive learning and cross-modal contrastive learning.
arXiv Detail & Related papers (2023-11-02T12:56:47Z) - Point2Vec for Self-Supervised Representation Learning on Point Clouds [66.53955515020053]
We extend data2vec to the point cloud domain and report encouraging results on several downstream tasks.
We propose point2vec, which unleashes the full potential of data2vec-like pre-training on point clouds.
arXiv Detail & Related papers (2023-03-29T10:08:29Z) - Few-Shot 3D Point Cloud Semantic Segmentation via Stratified
Class-Specific Attention Based Transformer Network [22.9434434107516]
We develop a new multi-layer transformer network for few-shot point cloud semantic segmentation.
Our method achieves the new state-of-the-art performance, with 15% less inference time, over existing few-shot 3D point cloud segmentation models.
arXiv Detail & Related papers (2023-03-28T00:27:54Z) - CP-Net: Contour-Perturbed Reconstruction Network for Self-Supervised
Point Cloud Learning [53.1436669083784]
We propose a generic Contour-Perturbed Reconstruction Network (CP-Net), which can effectively guide self-supervised reconstruction to learn semantic content in the point cloud.
For classification, we get a competitive result with the fully-supervised methods on ModelNet40 (92.5% accuracy) and ScanObjectNN (87.9% accuracy)
arXiv Detail & Related papers (2022-01-20T15:04:12Z) - Unsupervised Representation Learning for 3D Point Cloud Data [66.92077180228634]
We propose a simple yet effective approach for unsupervised point cloud learning.
In particular, we identify a very useful transformation which generates a good contrastive version of an original point cloud.
We conduct experiments on three downstream tasks which are 3D object classification, shape part segmentation and scene segmentation.
arXiv Detail & Related papers (2021-10-13T10:52:45Z) - DRINet: A Dual-Representation Iterative Learning Network for Point Cloud
Segmentation [45.768040873409824]
DRINet serves as the basic network structure for dual-representation learning.
Our network achieves state-of-the-art results for point cloud classification and segmentation tasks.
For large-scale outdoor scenarios, our method outperforms state-of-the-art methods with a real-time inference speed of 62ms per frame.
arXiv Detail & Related papers (2021-08-09T13:23:54Z) - Point Discriminative Learning for Unsupervised Representation Learning
on 3D Point Clouds [54.31515001741987]
We propose a point discriminative learning method for unsupervised representation learning on 3D point clouds.
We achieve this by imposing a novel point discrimination loss on the middle level and global level point features.
Our method learns powerful representations and achieves new state-of-the-art performance.
arXiv Detail & Related papers (2021-08-04T15:11:48Z) - Refinement of Predicted Missing Parts Enhance Point Cloud Completion [62.997667081978825]
Point cloud completion is the task of predicting complete geometry from partial observations using a point set representation for a 3D shape.
Previous approaches propose neural networks to directly estimate the whole point cloud through encoder-decoder models fed by the incomplete point set.
This paper proposes an end-to-end neural network architecture that focuses on computing the missing geometry and merging the known input and the predicted point cloud.
arXiv Detail & Related papers (2020-10-08T22:01:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.