Continual Learning of Long Topic Sequences in Neural Information
Retrieval
- URL: http://arxiv.org/abs/2201.03356v1
- Date: Mon, 10 Jan 2022 14:19:09 GMT
- Title: Continual Learning of Long Topic Sequences in Neural Information
Retrieval
- Authors: Thomas Gerald and Laure Soulier
- Abstract summary: We first propose a dataset based upon the MSMarco corpus aiming at modeling a long stream of topics.
We then in-depth analyze the ability of recent neural IR models while continually learning those streams.
- Score: 2.3846478553599098
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In information retrieval (IR) systems, trends and users' interests may change
over time, altering either the distribution of requests or contents to be
recommended. Since neural ranking approaches heavily depend on the training
data, it is crucial to understand the transfer capacity of recent IR approaches
to address new domains in the long term. In this paper, we first propose a
dataset based upon the MSMarco corpus aiming at modeling a long stream of
topics as well as IR property-driven controlled settings. We then in-depth
analyze the ability of recent neural IR models while continually learning those
streams. Our empirical study highlights in which particular cases catastrophic
forgetting occurs (e.g., level of similarity between tasks, peculiarities on
text length, and ways of learning models) to provide future directions in terms
of model design.
Related papers
- Robust Neural Information Retrieval: An Adversarial and Out-of-distribution Perspective [111.58315434849047]
robustness of neural information retrieval models (IR) models has garnered significant attention.
We view the robustness of IR to be a multifaceted concept, emphasizing its necessity against adversarial attacks, out-of-distribution (OOD) scenarios and performance variance.
We provide an in-depth discussion of existing methods, datasets, and evaluation metrics, shedding light on challenges and future directions in the era of large language models.
arXiv Detail & Related papers (2024-07-09T16:07:01Z) - State-Space Modeling in Long Sequence Processing: A Survey on Recurrence in the Transformer Era [59.279784235147254]
This survey provides an in-depth summary of the latest approaches that are based on recurrent models for sequential data processing.
The emerging picture suggests that there is room for thinking of novel routes, constituted by learning algorithms which depart from the standard Backpropagation Through Time.
arXiv Detail & Related papers (2024-06-13T12:51:22Z) - On the Resurgence of Recurrent Models for Long Sequences -- Survey and
Research Opportunities in the Transformer Era [59.279784235147254]
This survey is aimed at providing an overview of these trends framed under the unifying umbrella of Recurrence.
It emphasizes novel research opportunities that become prominent when abandoning the idea of processing long sequences.
arXiv Detail & Related papers (2024-02-12T23:55:55Z) - Neural Koopman prior for data assimilation [7.875955593012905]
We use a neural network architecture to embed dynamical systems in latent spaces.
We introduce methods that enable to train such a model for long-term continuous reconstruction.
The potential for self-supervised learning is also demonstrated, as we show the promising use of trained dynamical models as priors for variational data assimilation techniques.
arXiv Detail & Related papers (2023-09-11T09:04:36Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
We first propose a new approach to quantify the temporal relationships between frames captured by CNN-based action models.
We then conduct comprehensive experiments and in-depth analysis to provide a better understanding of how temporal modeling is affected.
arXiv Detail & Related papers (2022-04-25T19:06:48Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
A lifelong learning agent is able to continually learn from potentially infinite streams of pattern sensory data.
One major historic difficulty in building agents that adapt is that neural systems struggle to retain previously-acquired knowledge when learning from new samples.
This problem is known as catastrophic forgetting (interference) and remains an unsolved problem in the domain of machine learning to this day.
arXiv Detail & Related papers (2021-12-09T07:11:14Z) - Variational Predictive Routing with Nested Subjective Timescales [1.6114012813668934]
We present Variational Predictive Routing (PRV) - a neural inference system that organizes latent video features in a temporal hierarchy.
We show that VPR is able to detect event boundaries, disentangletemporal features, adapt to the dynamics hierarchy of the data, and produce accurate time-agnostic rollouts of the future.
arXiv Detail & Related papers (2021-10-21T16:12:59Z) - Adaptive Explainable Continual Learning Framework for Regression
Problems with Focus on Power Forecasts [0.0]
Two continual learning scenarios will be proposed to describe the potential challenges in this context.
Deep neural networks have to learn new tasks and overcome forgetting the knowledge obtained from the old tasks as the amount of data keeps increasing in applications.
Research topics are related but not limited to developing continual deep learning algorithms, strategies for non-stationarity detection in data streams, explainable and visualizable artificial intelligence, etc.
arXiv Detail & Related papers (2021-08-24T14:59:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.