Variational Predictive Routing with Nested Subjective Timescales
- URL: http://arxiv.org/abs/2110.11236v1
- Date: Thu, 21 Oct 2021 16:12:59 GMT
- Title: Variational Predictive Routing with Nested Subjective Timescales
- Authors: Alexey Zakharov, Qinghai Guo, Zafeirios Fountas
- Abstract summary: We present Variational Predictive Routing (PRV) - a neural inference system that organizes latent video features in a temporal hierarchy.
We show that VPR is able to detect event boundaries, disentangletemporal features, adapt to the dynamics hierarchy of the data, and produce accurate time-agnostic rollouts of the future.
- Score: 1.6114012813668934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Discovery and learning of an underlying spatiotemporal hierarchy in
sequential data is an important topic for machine learning. Despite this,
little work has been done to explore hierarchical generative models that can
flexibly adapt their layerwise representations in response to datasets with
different temporal dynamics. Here, we present Variational Predictive Routing
(VPR) - a neural probabilistic inference system that organizes latent
representations of video features in a temporal hierarchy, based on their rates
of change, thus modeling continuous data as a hierarchical renewal process. By
employing an event detection mechanism that relies solely on the system's
latent representations (without the need of a separate model), VPR is able to
dynamically adjust its internal state following changes in the observed
features, promoting an optimal organisation of representations across the
levels of the model's latent hierarchy. Using several video datasets, we show
that VPR is able to detect event boundaries, disentangle spatiotemporal
features across its hierarchy, adapt to the dynamics of the data, and produce
accurate time-agnostic rollouts of the future. Our approach integrates insights
from neuroscience and introduces a framework with high potential for
applications in model-based reinforcement learning, where flexible and
informative state-space rollouts are of particular interest.
Related papers
- eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling [9.52474299688276]
We introduce a low-rank structured variational autoencoder framework for nonlinear state-space graphical models.
We show that our approach consistently demonstrates the ability to learn a more predictive generative model.
arXiv Detail & Related papers (2024-03-03T02:19:49Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - Neural Koopman prior for data assimilation [7.875955593012905]
We use a neural network architecture to embed dynamical systems in latent spaces.
We introduce methods that enable to train such a model for long-term continuous reconstruction.
The potential for self-supervised learning is also demonstrated, as we show the promising use of trained dynamical models as priors for variational data assimilation techniques.
arXiv Detail & Related papers (2023-09-11T09:04:36Z) - PDSketch: Integrated Planning Domain Programming and Learning [86.07442931141637]
We present a new domain definition language, named PDSketch.
It allows users to flexibly define high-level structures in the transition models.
Details of the transition model will be filled in by trainable neural networks.
arXiv Detail & Related papers (2023-03-09T18:54:12Z) - Anamnesic Neural Differential Equations with Orthogonal Polynomial
Projections [6.345523830122166]
We propose PolyODE, a formulation that enforces long-range memory and preserves a global representation of the underlying dynamical system.
Our construction is backed by favourable theoretical guarantees and we demonstrate that it outperforms previous works in the reconstruction of past and future data.
arXiv Detail & Related papers (2023-03-03T10:49:09Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
We propose a new decomposed dynamical system model that represents complex non-stationary and nonlinear dynamics of time series data.
Our model is trained through a dictionary learning procedure, where we leverage recent results in tracking sparse vectors over time.
In both continuous-time and discrete-time instructional examples we demonstrate that our model can well approximate the original system.
arXiv Detail & Related papers (2022-06-07T02:25:38Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Deep Neural Dynamic Bayesian Networks applied to EEG sleep spindles
modeling [0.0]
We propose a generative model for single-channel EEG that incorporates the constraints experts actively enforce during visual scoring.
We derive algorithms for exact, tractable inference as a special case of Generalized Expectation Maximization.
We validate the model on three public datasets and provide support that more complex models are able to surpass state-of-the-art detectors.
arXiv Detail & Related papers (2020-10-16T21:48:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.